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Abstract

Most baseline problems in instrumental methods are characterized by a smooth

baseline and a superimposed signal that carries the analytical information: a se-

ries of peaks that are either all positive or all negative. We combine a smoother

with asymmetric weighting of deviations from the (smooth) trend get an effective

baseline estimator. It is easy to use, fast and keeps the analytical peak signal in-

tact. No prior information about peak shapes or baseline (polynomial) is needed

by the method. The performance is illustrated by simulation and applications to

real data.
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1 Introduction

Unstable baselines occur in many types of instrumental measurements. They can cause

severe problems, especially when detection limits are approached[1, 2]. For this reason

baseline correction is being used routinely. In many instrumental software systems it

is a semi-manual process: the analyst indicates (on a computer screen) begin and end

of ”peak regions” and the software constructs a (piece-wise linear) connecting curve as

an estimate of the baseline, which then is subtracted. This approach is subjective and

time-consuming and of limited repeatibility[3].

There have been numerous proposals for automatic baseline correction. We limit

ourselves to the case in which no models for signal (and background) are available.

Assuming positive peaks, we can classify existing approaches as follows.

• Differencing and filtering. A drifting baseline generally shows a much smaller rate

of change than the peaks of interest. Differencing of a signal amplifies the higher

frequency components and hence suppresses baseline drift. Additional filtering

may be necessary because high-frequency noise is amplified. Such an approach

leads to bandpass filters that suppress both baseline drift and measurement noise.

Peak shape models may also be used [4, 5].

• The maximum entropy approach [6] also tries to capitalize on the differences in

frequency content by separating the signal into a slow (the baseline) and a fast

part (the analyte signal).

• Multivariate, or polynomial, baseline modelling, taking advantage of areas where

no signal, but only background, is present [7].

• Simulation of a running ball. An imaginary ball with a large radius is imagined

running over (under) the signal. The trace of its lowest (highest)point is the

estimated baseline [8]

• Borrowing ideas from robust statistics. Iterative weighting reduces the influence

of the higher parts of peaks to essentially zero [9].
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• Using an asymmetric goal function. The usual sum of squares of differences

between data and a fitted curve is hard limited on the main part of the positive

axis [10].

A more detailed comparison of some of these methods can be found in [11].

The purpose of this paper is to present an alternative and quite general approach

for baseline estimation, which was only hinted at in connection to parametric time

warping[12]. We use a (Whittaker) smoother to get a slowly varying estimate of the

baseline[13]. In contrast to ordinary least squares smoothing, however, positive devi-

ations with respect to baseline estimate are weighted (much) less than negative ones.

The latter approach is known as asymmetric least squares (AsLS). There exist rela-

tively few publications on the use of AsLS in regression modelling[14, 15]. The AsLS

approach has also been used by us for smoothing [16], for background correction [17]

in hyphenated chromatography and for finding new features in large spectral data sets

[18].

Asymmetric least squares smoothing is attractive for baseline estimation: 1) it is

fast, even for large signals; 2) the flexibility of the baseline can be tuned easily with one

parameter; 3) the position of the baseline can be tuned with one other parameter. Given

the two parameters, the computations are completely reproducible. Unfortunately we

are not able to give and all-purpose recipe for automatic choice of the parameters for

arbitrary signals, so human judgement will generally be needed. With a simulation we

document performance in a situation where baseline and peaks are known.

2 Smoothing and asymmetric least squares

For completeness, we give a summary of the Whittaker smoother[13]. Let y be a signal,

of length m, assumed to be sampled at equal intervals. Let z be another series, which

should have the following properties: 1) being smooth, but 2) also being faithful to y.

These two goals can be combined by minimizing the penalized least squares function

S =
∑

i

(yi − zi)
2 + λ

∑
i

(∆2zi)
2, (1)
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where ∆2zi = (zi−zi−1)− (zi−1−zi−2) = zi−2zi−1 +zi−2. The first term in S measures

the fit to the data, while the second term is a penalty on non-smooth behavior of z.

The parameter λ tunes the balance between the two terms. A generalization introduces

a vector w of weights and minimizes

S =
∑

i

wi(yi − zi)
2 + λ

∑
i

(∆2zi)
2. (2)

The minimization problems leads to the following system of equations:

(W + λD′D)z = Wy, (3)

where W = diag(w) and D is a difference matrix: Dz = ∆2z. This generally is a large

system, as the number of equations is equal to m, the length of y. But it also is a very

sparse system: only the main diagonal and two sub-diagonals above and below it are

non-zero. Efficient storage and computation (both linear in m) are possible in Matlab

or classic computer languages.

In a common applications relatively light smoothing will remove noise, while strong

smoothing gives the slowly varying trend of a signal. Figure 1 shows (dotted line), for

a simulated (chromatographic) signal (three Gaussian peaks on a sinusoidal baseline),

the trend that would be obtained by strong smoothing. It is clear that this trend does

not estimate the baseline. The signal deviates in both directions from the trend. For

a good baseline, we should only see deviations in the positive direction; the analytical

peaks of the signal should not be distorted.

When using this (or any other) smoother, the signs of the residuals y − z don’t

matter: a positive residual gets the same weight as a negative one. We get interesting

and useful results if we change this, and give much more weight to the negative residuals.

We introduce a parameter p and compute weights as follows: wi = p if yi > zi and

wi = 1 − p otherwise. The goal is to find a solution, say z(p), of (3) that conforms to

this choice of weights. This is the principle of asymmetric least squares[16, 15], applied

to smoothing.

The equations for the solution look intricate, because of the mutual interaction of

weights and smooth curve, but it can be transformed into iterative application of two
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easy computations. Let an approximate solution, say z̃ be given. A natural choice is the

result of smoothing with uniform weights. Given z̃, it is trivial to compute new weights,

say w̃. With these weights we solve (3) to get a new estimate of z. We repeat these

steps until the weights don’t change anymore. One can prove that the goal is convex

and that the iterations always go downhill along the gradient, so that convergence will

be obtained. In practice 5 to 10 iterations are sufficient. See the supporting material

for mathematical details.

Implementation in Matlab is simple, as the following code fragment shows. To em-

phasize the basic simplicity of the algorithm, the number of iterations has been fixed

to 10. In practical applications one should check whether the weights show any change;

if not, convergence has been attained. Computation time is linear in length of y and is

less than a second for a series of 1000 samples (on a 1000 MHz PIII computer).

function z = baseline(y, lambda, p)

% Estimate baseline with asymmetric least squares

m = length(y);

D = diff(speye(m), 2);

w = ones(m, 1);

for it = 1:10

W = spdiags(w, 0, m, m);

C = chol(W + lambda * D’ * D);

z = C \ (C’ \ (w .* y));

w = p * (y > z) + (1 - p) * (y < z);

end

There are two parameters: p for asymmetry and λ for smoothness. Both have to be

tuned to the data at hand. We found that generally 0.001 ≤ p ≤ 0.1 is a good choice

(for a signal with positive peaks) and 102 ≤ λ ≤ 109, but exceptions may occur. In any

case one should vary λ on a grid that is approximately linear for log λ. Often visual

inspection is sufficient to get good parameter values. The speed of the algorithm allows

interactive use: on a 1000 MHz PIII PC, using Matlab 6.5, it takes less than half a
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Figure 1: Simulated (chromatographic) data and iteratively estimated baseline by AsLS

smoothing algorithm. The upper panel shows the first three iterations and the final

result (p = 0.05 and λ = 106. The lower panel shows the final data weights.

second to estimate the baseline for a signal of length 1000.

In Figure 1 three iterations and the final result of the AsLS algorithm on the sim-

ulated chromatographic data are shown. Convergence occurred after 5 iterations. The

initial estimate, which was the result of symmetric smoothing, is strongly improved with

each new iteration. The figure also shows, in the lower panel, the final data weights.

Note, that they are all small (0.05) at the peak positions.

To get an better impression of the potential performance of the algorithm, we com-

puted the optimal values for parameters (p and λ), using the true baseline, say t, as a

reference, i.e, we varied λ and p on a fine grid and minimize Q =
∑

i(zi − ti)
2. This is
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unrealistic insofar that in reality we don’t know t. But it gives us a figure for the best

case performance. If Q can be made small, it is worthwhile to search for algorithms that

yield (near) optimal parameter values from the data. On the other hand, if Q cannot

even be made small if we have the actual baseline as our guide, the whole approach

might better be discarded.

Figure 2 shows the simulated signal (upper right panel) the logarithm grid on which

the parameters are varied (upper left plot). For each pair of parameters (λ, p) a baseline

was estimated and the error, RMSE =
√∑m

i (ẑi − ti)2/m, was computed. Contour lines

and profile plots (left column of Figure 2) show clearly that one minimum of the RMSE

exists. For the values of λ and p at lowest RMSE the baseline estimate is shown (fat

solid line) in the upper right panel. The correspondence between the true and the

estimated baseline is very good as shown in the center right panel (graph of difference

ẑ − t). Compare the size of this difference with the size of the original baseline signal.

It is also interesting to note that the peak signals, that carry the analytical information

are hardly deformed (lower right panel graphs x− (y − ẑ)).

The simulation shows that, with proper parameter values, a result can be obtained

that is quite near to the true baseline, supporting the validity of the approach. In

practice we have only the measured data to guide us in choosing good values of λ and

p. We were not able to find a fail-safe cross-validation algorithm yet and therefore

we report here our experience with relatively ad-hoc computations. They can help to

set approximately optimal parameter values. Human judgement, however, still seems

preferable for fine-tuning.

When relatively large “pure baseline” regions are present, guidance for a good value

of the asymmetry parameter p can be obtained from the procedure that we sketch here.

If p is chosen well, a histogram of the residuals y− z will have two components: a more

or less normally distributed peak near zero, representing noise around the baseline, and

an asymmetric component on the positive axis, representing the peaks in the signal.

When the peak of the ”normal” distribution is at zero, the baseline will ”cut through

the middle of the noise” and this is what we want. One varies p to get this results.
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Figure 2: Best case performance of the algorithm when varying the parameters λ and p.

Upper left panel: contour lines of RMSE; the light colored squares show the search grid

that was used. Upper right: simulated data, true baseline (dashed line) and estimated

baseline (solid line). Middle and lower left panels: profiles of RMSE at optimal λ and

optimal p. Middle right panel: difference between estimated and true baseline. Lower

right panel difference between true (chromatographic) peaks and the baseline corrected

signal. (Matlab code to produce this plot is additional material)

.
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Finding the optimal smoothing parameter λ is harder. We did some calculations to

see if for a given p, a good value of λ might be found by asymmetric cross-validation.

The idea is to leave out all the even observations (i.e those with i even) by giving them

zero weights. The smoother will automatically compute interpolated values for them.

These are compared to the real data by computing the asymmetrically weighted sums

of squares of differences between interpolated and real values, say CV. One searches

for the value of λ that minimizes CV. We remark that this only works well when the

noise nearly white (uncorrelated). Otherwise too small values of λ will be found. We

recommend to always check results by inspection.

This procedure seems to work reasonably well for a fixed value of p. If we try to

include p in the cross-validation, we run into an unpleasant property of AsLS: the sum

of asymmetrically weighted squared residuals depends strongly on p. A simple example

illustrates this. Let xi = i/100, i = 1 . . . 99 be our ”data”, for which we compute the

asymmetric mean gp =
∑

i wixi/
∑

i wi, with asymmetric weights w. We also compute

WSS =
∑

i wi(xi − gp)
2 and CSS = WSS/

∑
i wi. One sees that larger p gives larger

WSS and CSS. This phenomenon wrecks cross-validation, as we experienced in our

simulations. We could not find a theoretical principle or satisfactory empirical formula

to calibrate WSS or CSS. As an ad-hoc solution we offer the following approach: com-

pute WSS for the left-out data and divide it by as computed from WSS as computed

from the left-in data. In general, we advice always to check by visual inspection.

Table 1: Asymmetric mean, sum of weighted squares (WSS) and corrected sum of

weighted squares (CSS) for several values of asymmetry parameter p. The ”data” are

i/100, for i = 1 . . . 99. The table shows that generally WSS and CSS increase with

increasing p.

p 0.0010 0.0020 0.0050 0.1000 0.2000 0.5000

ALS mean 0.0354 0.0475 0.0707 0.2525 0.3350 0.5000

WSS 0.0304 0.0592 0.1410 1.8191 2.8746 4.0425

CSS 0.0098 0.0142 0.0190 0.0608 0.0726 0.0817
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3 Applications

We now present a number of applications of the AsLS baseline correction procedure.

The examples given are of different complexity and illustrate the performance and

limitations of the algorithm.

Chromatographic signals generally are very well-behaved candidates for baseline

estimation. Peaks are relatively sharp and often well isolated, with little noise. Figure 3

shows an example. The length of the signal is 3600 samples. The baseline is very

smooth, leading to λ = 105, while noise is low, leading to a small value of p (0.01).

The mass spectrum in Figure 4 was obtained from human blood serum with a

MALDI-TOF instrument, in the course of a proteomics project. Approximately 45000

data pairs (m/z, ion counts) were summarized in mass channels one Dalton wide. The

influence of p is illustrated in figures 5 and 6. When the distribution of residuals is

approximately centered at zero, the baseline runs in the middle of the noise band in

areas without signal.

Figure 7 shows Raman spectra before and after baseline removal. The spectra

exhibit a baseline disturbance (elevated baseline for low wavenumbers) that can be

attributed to fluorescence of the reaction mixture. Also, a broad band-like feature

can be seen centered around 1500 cm-1. This feature is caused by the glass wall of

the reactor. Both these irrelevant spectral disturbances can be removed well by the

ALS/baseline correction. Note that the settings of the baseline correction is the same

for all three measured spectra.

Figure 8 shows data from an FTIR instrument [6]. The baseline here is quite

variable, compared to the previous examples. A rather small value of λ (100) is needed

to get a good fit (based on visual judgement).

When many peaks overlap and together form a ”mountain range”, baseline estima-

tion is hard. A subjective choice of p and λ, guided by subject matter knowledge and

experiences, will be the only reasonable choice then. An example is shown in Figure 9.

Its hard to decide how much the baseline can be allowed to move upward under the two

peak areas. In the lower spectrum the right part of the baseline is not well estimated.
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Figure 3: Baseline correction of a GC chromatogram. Top: GC chromatogram and

estimated baseline; bottom: baseline corrected chromatogram.
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Figure 4: Baseline correction of a MALDI-TOF mass spectrum. Top: spectrum and

estimated baseline; bottom: baseline corrected spectrum.

12



3000 3500 4000 4500 5000
1000

1500

2000

2500

3000

m/z [Dalton]

In
te

ns
ity

Spectrum (detail) and baseline; λ = 109, p = 0.02

3000 3500 4000 4500 5000
1000

1500

2000

2500

3000

m/z [Dalton]

In
te

ns
ity

Spectrum (detail) and baseline; λ = 109, p = 0.05

3000 3500 4000 4500 5000
1000

1500

2000

2500

3000

m/z [Dalton]

In
te

ns
ity

Spectrum (detail) and baseline; λ = 109, p = 0.15

3000 3500 4000 4500 5000
1000

1500

2000

2500

3000

m/z [Dalton]

In
te

ns
ity

Spectrum (detail) and baseline; λ = 109, p = 0.3

Figure 5: Detail of the MALDI-TOF mass spectrum with estimated baseline, illustrat-

ing the effect of the asymmetry parameter p.
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Figure 6: Illustration of how the asymmetry parameter p influences the distribution

of the differences between spectrum and baseline. The peaked part of the distribution

should be centered around zero.
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Figure 7: Baseline correction of Raman spectra that were measured during a solvent

co-polymerisation reaction. Top plots: 3 measured spectra and estimated baseline;

bottom plots: the three spectra in one graph, before (left panel) and after (right panel)

baseline correction.
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Figure 8: Baseline estimation for an FTIR spectrum. Top: spectrum and baseline;

bottom: after baseline correction. The highly variable baseline dictates a small value

of the penalty parameter: λ = 100 (p = 0.9).
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Figure 9: Two NIR spectra and baseline estimates. Parameter values: p = 0.01 and

λ = 107.

We could get a better fit there by reducing λ, but then the baseline would be drawn

appreciably more upward under the peaks.

4 Discussion

We have presented a fast, simple and effective algorithm for baseline estimation. Two

parameters completely determine this baseline. A small simulation showed that a very

good approximation to the real baseline for the optimal values of p and λ. Hence,
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little distortion maybe expected of the analytical peak signal that should be retrieved.

Unfortunately we were not yet able to present a fully automatic procedure to set the

parameters to their ”optimal” values. On the other hand, with narrow peaks, alternat-

ing with baseline sections with little noise, it is not hard to select suitable parameter

values by visual inspection. In those cases sensitivity to the asymmetry parameter is

small. Experience has already shown the value of the baseline correction algorithm in

a variety of applications.

The Whittaker smoother is a natural choice, but asymmetric weighting can be

combined with other smoothers too. In some cases it may be preferable to use P-

splines[19], which combine a moderately-sized B-spline basis with a difference penalty.

The advantage is that the size of the system equations in (3) is reduced to the size of

the B-spline basis. This can be essential if sparse matrix software is not available and

very long signals have to be processed.

P-splines can be extended to two and more dimensions with tensor products of

B-splines and appropriate difference penalties. A fast algorithm for data on grids is

available[20]. This can be adapted easily to an asymmetric least squares setting. Initial

experience with GC-MS data, evolving spectra, and images have been positive. Results

will be reported elsewhere.

More research is needed on data with broad peaks, where a baseline tends to be

drawn into the peaks. The present difference penalty is a special, rather simple, way of

encoding prior ideas about global smoothness. If reliable information is available about

local variations in smoothness, this can be encoded in a variable penalty. To this end

one can introduce penalty weights v and changes the penalty to λ
∑

i vi(∆
2zi)

2.

There is much room for further improvements in other directions. The MALDI-TOF

spectrum clearly shows that the strength of the noise diminishes with increasing values

of m/z. This suggest that some form of additional weighting in the asymmetric sum

of squares, to compensate for changes in the variance of the noise, my be beneficial.

It also looks as if the flexibility of the baseline should be larger at low m/z. We

are investigating these extensions in the framework of an explicit statistical model for
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signals with pronounced baselines. The idea is to model a data series as the sum of

three components: a smooth baseline, noise with a normal distribution and exclusively

positive (negative) peaks having an asymmetric distribution on the positive (negative)

axis [21]. Preliminary results have been encouraging, but more research is needed.

Another promising line of research is smoothing with an asymmetric L1 measure of

fit, so-called quantile smoothing [22]. In an L1 norm the (weighted) sum of of absolute

values takes the place of the (weighted) sum of squares. If the L1 norm is used in the

penalty too, a linear program is obtained. The interior point algorithm allows efficient

solution of this problem. A genomic application of quantile smoothing, replacing the

smoothing spline with the Whittaker smoother, is described in [23].

Ruckstuhl et al. [9] report good results with an alternative deviation from symmetric

least squares. They adapt an idea from robust statistics, a weighting function that

essentially reduces the influence of observations far from the baseline to zero. This a

combined with a local linear smoothing. This is highly non-linear problem and good

starting values are essential to avoid getting stuck in a local minimum. Local regression

can also have difficulties with broad peaks, because there may essentially be no data left

(after weighting) to do regression on. In contrast, our penalty approach automatically

interpolates even large areas and the convexity of the problem guarantees convergence

to the global minimum.

Mazet et al.[10] use an explicit asymmetric goal function. For positive values the

sum of squares is limited by a threshold. The baseline is modeled as a polynomial,

which inherently limits its flexibility. There also is no guarantee that convergence to a

unique minimum will occur.

An advantage of both the methods of Ruckstuhl et al. [9] and Mazet et al.[10] is

that the small residuals y− z are weighted symmetrically. This is not the case with our

method: asymmetric weighting applies everywhere. But where residuals are small, we

are on the baseline, not on the peaks, so we would like to have symmetric smoothing

there. A fruitful area of research would be to develop hybrid methods, that starts

with asymmetric smoothing, to come near the baseline with guaranteed convergence
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and switches to an alternative weighting (symmetric for small residuals) in a second

phase. This might also reduce the edge effect that sometimes occur with our method:

the estimated baseline strays away from the signal at the edges, even when the edges

apparently are part of the baseline (see Figure 1).
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