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Abstract

This paper presents a new approach to structural topology optimization. We represent the structural boundary by a

level set model that is embedded in a scalar function of a higher dimension. Such level set models are flexible in handling

complex topological changes and are concise in describing the boundary shape of the structure. Furthermore, a well-

founded mathematical procedure leads to a numerical algorithm that describes a structural optimization as a sequence

of motions of the implicit boundaries converging to an optimum solution and satisfying specified constraints. The result

is a 3D topology optimization technique that demonstrates outstanding flexibility of handling topological changes,

fidelity of boundary representation and degree of automation. We have implemented the algorithm with the use of

several robust and efficient numerical techniques of level set methods. The benefit and the advantages of the proposed

method are illustrated with several 2D examples that are widely used in the recent literature of topology optimization,

especially in the homogenization based methods.
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1. Introduction

The goal of this paper is to advance methodology for structural topology optimization. We present a

powerful method based on level set models for optimizing linearly elastic structures which satisfy a design

objective and certain constraints. In the proposed method, the structure under optimization is implicitly
represented by a moving boundary embedded in a scalar function (the level set function) of a higher di-

mensionality. While the shape and topology of the structure may undergo major changes, the level set

function remains to be simple in its topology. Therefore, by a direct and efficient computation in the

embedding space, the movement of the design boundaries under a relevant speed function can be tracked to

capture changes in the shape and topology of the structure. The level set models may also be referred to as
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implicit moving boundary (IMB) models and they can easily represent complex boundaries that can form
holes, split into multiple pieces, or merge with others to form a single one. Based on the concept of

propagation of the level set surface, the design changes are carried out as a mathematical programming for

the problem of optimization.

We have developed a numerical procedure for the structural optimization problem using the level set

models. Necessary conditions for the optimum solution and for the convergence of the procedure are

derived. We have implemented the proposed algorithm with the use of several robust and efficient nu-

merical techniques of level set methods. The benefit and the advantages of the proposed method are il-

lustrated with several 2D examples that are widely used in the recent literature of topology optimization,
especially in the homogenization based methods.

2. Background

Structural optimization, in particular the shape and topology optimization, has been identified as one of

the most challenging tasks in structural design. Various techniques and approaches have been developed

during the past decade. The following is a brief review of the key approaches.
One main approach to structural design for variable topologies is the method of homogenization [1–8],

in which a material model with micro-scale voids is introduced and the topology optimization problem is

defined by seeking the optimal porosity of such a porous medium using one of the optimality criteria. By

transforming the difficult topology design problem into a relatively easier ‘‘sizing’’ problem, the homoge-

nization technique is capable of producing internal holes without prior knowledge of their existence. That

is, it offers a tool for simultaneous shape and topology optimization. However, the homogenization method

may not yield the intended results for some objectives in the mathematical modeling of structural design. It

often produces designs with infinitesimal pores in the materials that make the structure not manufacturable.
Further, numerical instabilities may introduce ‘‘non-physical’’ artifacts in the results and make the designs

sensitive to variations in the loading.

A number of variations of the homogenization method have been investigated to deal with these issues

by penalization of intermediate densities, especially the ‘‘solid isotropic material with penalization’’ ap-

proach for its conceptual simplicity [9–11]. Material properties are assumed constant within each element

used to discretize the design domain and the design variables are the element densities. The material

properties are modeled to be proportional to the relative material density raised to some power. The power-

law based approach to topology optimization has been widely applied to problems with multiple con-
straints, multiple physics and multiple materials. However, numerical instability and computational

complexity remain to be the major difficulties for realistic requirements.

A simple method for shape and layout optimization, called ‘‘evolutionary structural optimization’’

(ESO), has been proposed by Xie and co-workers [12,13] which is based on the concept of gradually re-

moving material to achieve an optimal design. The method was developed for various problems of

structural optimization including stress considerations, frequency optimization, and stiffness constraints.

The ESO method uses a fixed model with standard finite elements to represent the initial design domain

while the so-called optimum design is found as a subset of the initial set of finite elements. A key process of
this method is to use an appropriate criterion to assess the contribution of each element to the specified

behavior (response) of the structure and subsequently to remove some elements with the least contribution

(usually known as hard kill). This approach is essentially based on an evolutionary strategy focusing on

local consequences but not on the global optimum. It is typically computationally expensive. A similar

approach called ‘‘reverse adaptivity’’ was proposed by Reynolds et al. [14] at which a fixed percentage of

relatively under-stressed material is removed to find approximately fully stressed structures. Essentially,

both ESO and reverse adaptivity are homotopy methods based on material hard kills. In reverse adaptivity
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finite element meshes near the boundary during the design procedure are refined to reduce computational
cost or increase resolution.

Another related approach is called ‘‘bubble method’’ proposed by Eschenauer and co-workers [15,16]. In

the method, so-called characteristic functions of the stresses, strains and displacements are employed to

determine the placements or insertion of holes of known shape at optimal positions in the structure, thus

modifying the structural topology in a prescribed fashion In such case, the design for a given topology is

settled before its further changes.

Adopting the same principle of redesigning the structure based on the stress distribution in the current

design, another approach was developed by Sethian and Wiegmann [17] with a focus on the resolution of
the boundaries. The boundaries are allowed to move according to the stresses on the boundaries. A level set

method is employed for tracking the motion of the structural boundaries under a speed function and in the

presence of potential topological changes. An explicit jump immersed interface method is used for com-

puting the solution of the elliptic problem in complex geometries without using meshes. The approach is

also an evolutionary one. The principal idea is to remove material in regions of low stress and to add

material in regions of high stress. A removal rate is established representing a percentage of the maximal

initial stress below which material may be eliminated, and above which material should be added. The

removal rate determines the closed stress contours along which new holes are cut and also the velocity of
the boundary motion. The biggest benefit of this approach is that it is easier to add material (with some sub-

grid resolution) at holes� boundaries with high stress than on a triangulated finite element mesh. This

approach seeks to improve design by making more efficient use of the material. The evolutionary process

can be characterized as to allow one to start with a design that has holes cut ‘‘in the wrong places’’ and see

these holes disappear.

Boundary-based methods for structural design are another class of methods, also known as shape op-

timization methods. In a boundary-based optimization problem, the design variables directly control the

exterior and interior boundary shapes of the structure. It is a more direct approach than homogenization.
For example, in general it allows more explicit representation of any features to be incorporated in the

design. However, such a boundary representation often has a sever limitation that it defines a fixed to-

pology of the structure. Changes in topology provide the greatest challenge in a boundary-based approach

to structural optimization.

In our point of view, a boundary-based method with the capability of handling topology changes has the

most promising potential. Our proposed method is to use implicit, moving boundaries for topology op-

timization. The structural boundaries are viewed as moving during the optimization process––interior

boundaries (or holes) may merge with each other or with the exterior boundary and new holes may be
created. Our idea is to combine level set methods [17,18] for the representation of the IMBs and a math-

ematical programming method for topology optimization.

3. Level set models of implicit moving boundaries

In practice, the method of IMBs for structural optimization must be computed using some specific

boundary representation. Generally speaking, it is desirable to have the boundary representation as general
as the underlying physical theory. More importantly, the representation should not rely on any kind of

explicit parameterization, along with no direct specification of the topology of the structure. These capa-

bilities would allow the boundary models to easily change the structural topology while undergoing op-

timization. A boundary can ‘‘split’’ into pieces to form multiple boundaries. Conversely, several distinct

boundaries may come together to make a single boundary. Because of the lack of explicit parameterization,

the boundary models do not suffer the problems of parametric surfaces, e.g., a limited set of possible shapes

and the need of re-parameterization after undergoing significant changes in shape.
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For these reasons we use the method of level set models [18–20] for an implicit representation of the
structural boundaries. The fundamental concept of level set methods is described here for a general 3D

structure with surface boundaries to provide necessary background for later sections. A level set model

specifies a surface in an implicit form as an iso-surface of a scalar function, U : R3 7!R, embedded in 3D,

i.e.,

S ¼ fx : UðxÞ ¼ kg; ð1Þ

where k is the iso-value and is arbitrary, and x is a point in space on the iso-surface U. In other words, x is
the set of points in R3 that composes the kth iso-surface of U. The embedding U can be specified in any

specific form, e.g., as a regular sampling on a rectilinear grid. A process of structural optimization can be

described by letting the level set function dynamically change in time. Thus, the dynamic model is expressed

as

SðtÞ ¼ fxðtÞ : UðxðtÞ; tÞ ¼ kg: ð2Þ
By differentiating both sides of Eq. (2) with respect to time and applying the chain rule, we obtain the so-

called ‘‘Hamilton–Jacobi-type’’ equation

oUðx; tÞ
ot

þrUðx; tÞ dx
dt

¼ 0: ð3Þ

This equation defines an initial value problem for the time dependent function U.

In this dynamic level set model, the structural optimization process can be viewed as follows. Let dx=dt
be the movement of a point on a surface driven by the objective of the optimization, such that it can be
expressed in terms of the position of x and the geometry of the surface at that point. Then, the optimal

structural boundary is expressed as a solution of a partial differential equation on U:

oUðxÞ
ot

¼ 
rUðxÞ dx
dt

� 
rUðxÞCðx;UÞ; ð4Þ

where Cðx;UÞ denotes the ‘‘speed vector’’ of the level set surface, which depends on the objective of the

optimization.
This formulation with level set models has two major theoretical and practical advantages over con-

ventional surface models, especially in the context of topology optimization. First, level set models are

topologically flexible. The 3D scalar function U is defined to always have a simple topology; its level sets

can easily represent complicated surface shapes that can form holes, split to form multiple boundaries, or

merge with other boundaries to form a single surface. There is no need to re-parameterize the model as

it undergoes significant changes in shape, in contrast to any conventional boundary shape design [18].

Further, the models can incorporate a large number of degrees of freedom and a number of numerical

techniques have been developed [18] to make the initial value problem of Eq. (4) computationally robust
and efficient. In fact, the computational complexity can be made proportional to the level set�s surface area
rather than the size of the volume in which it is embedded. We shall describe the details of our proposed

approach and its numerical implementation as follows.

4. The level set formulation

In this section we present a formulation of the level set method for finding the optimum design of a
linearly elastic structure. In this context the optimum design of the structure includes information on the

topology, shape and sizing of the structure and the level set models allow for addressing all three problems

simultaneously.
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In the general case, the problem of structural optimization can be specified as

Minimize
oD

JðuÞ ¼
Z
D
F ðuÞdX;

subject to :

Z
D
EijkleijðuÞeklðvÞdX ¼

Z
D
pvdX þ

Z
oDt

svdS;

ujoDu
¼ u0 8v 2 U ;Z

D
dX6 Vmax:

ð5Þ

Here, the solid domain of the structure is represented by D with its boundary oD. The linearly elastic

equilibrium equation is written in its weak variation form, with u denoting the displacement field in the

space U of kinematically admissible displacement fields, Eijkl the elasticity tensor, eij the strain tensor, p the

body forces, s the boundary tractions applied on the part oDt of the boundary oD, and u0 the prescribed
displacement on the part oDu of the oD. The last inequality describes an upper limit on the amount of

material in terms of the maximum admissible volume Vmax of the design domain. The problem of structural

optimization is to find the optimal boundary oD of D so that the objective function JðuÞ is minimized for a

specific physical or geometric type described by F . This is a standard notion of topology optimization [8].

For an easy embedding of the level set models, we define a larger, fixed reference domain D such that it

fully contains the current structure solid D, i.e., D � D. As described in Eq. (4), the structural boundary oD
is to be represented implicitly by a level set model S as an embedding through a higher dimensional function

UðxÞ such that S ¼ fx : x 2 D; UðxÞ ¼ 0g. Here we use the convention that k ¼ 0. Furthermore, we define
an inside–outside function for U such that

UðxÞ > 0 8x 2 D n oD; ð6Þ

UðxÞ < 0 8x 2 D n D: ð7Þ

These domains and the level set embedding of the model are shown in Fig. 1.

Thus, with the level set models we can formulate the optimal design problem as follows:

Minimize
U

Jðu;UÞ ¼
Z
D
F ðuÞHðUÞdX;

subject to : aðu; v;UÞ ¼ Lðv;UÞ; ujoDu
¼ u0; 8v 2 U ;

V ðUÞ6 Vmax

ð8Þ

in terms of the energy bilinear form aðu; v;UÞ, the load linear form Lðv;UÞ, and the volume V ðUÞ of the

structure, respectively described by

aðu; v;UÞ ¼
Z
D
EijkleijðuÞeklðvÞHðUÞdX;

Lðv;UÞ ¼
Z
D
pvHðUÞdX þ

Z
D

svdðUÞjrUjdX;

V ðUÞ ¼
Z
D
HðUÞdX;

ð9Þ

where dðxÞ is the Dirac function and HðxÞ is the Heaviside function.
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5. Optimization algorithm

With the formulation of Eq. (8) we now describe an optimization procedure. The optimization process

operates on the scalar function U which is defined over the fixed domain D. The process can be implemented

as a mathematical programming problem. The principal guideline for the optimization process is to move
the design boundary represented by the level set model according to its variation sensitivities with respect of

the objective function. The process would terminate when the objective cannot be improved further. This

optimization procedure is derived from the fundamentals of curve and surface evolution of the level set

methods [18] in terms of evolution of the level set surfaces described by Eq. (4). The key development of our

application of the level set methods here is to find an appropriate ‘‘speed vector’’ (C in Eq. (4)) such that it

will drive the design boundary into the optimum shape based on the given objective function and the

constraints. As shown in Eq. (4) the speed vector must be expressed in terms of the shape of the boundary

and the variation sensitivity. At the optimum solution the boundary variation sensitivity everywhere on the
boundary is identical. A highlight of our approach presented here is the identification of the speed vector as

the link between the general structural optimization process and the powerful methods of level sets. Our

optimization algorithm is described as follows.

Optimization Algorithm:

Step 1: Initialize the embedding level set function Uðx; 0Þ at t ¼ 0. A general treatment is to set UðxÞ to be

the signed distance to the given boundary of the initial design D such that UðxÞ ¼ 0 8x 2 oD. The equi-

librium equation is then solved to find the displacement u:

aðu; v;UÞ ¼ Lðv;UÞ; ujoDu
¼ u0ðxÞ; 8v 2 U : ð10Þ

Step 2: Find the adjoint displacement w of the conjugate equation:

aðv;w;UÞ ¼ hJuðu;UÞ; vi; wjoDu
¼ 0; 8v 2 U : ð11Þ

Here hJuðu;UÞ; vi denotes the Fr�eechet derivative of Jðu;UÞ with respect to u in the direction of vðxÞ and it is

written as

hJuðu;UÞ; vi ¼
Z
D

oF ðuÞ
ou

vHðUÞdX:

Step 3: Choose a weighting function lðxÞ 6¼ 0 in the fixed reference domain D and calculate the Lagrange

multiplier kþ of the volume constraint of the structure:

Fig. 1. Design domains and the level set model: (a) designed solid D and its embedding domain D and (b) embedded function UðxÞ and
level set model S.
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k ¼ 

R
D l
2ðxÞbðu;w;UÞdðUÞjrUjdXR

D l
2ðxÞdðUÞjrUjdX
;

kþ ¼ max½k; 0�; lðxÞ 6¼ 0 8x 2 D;

bðu;w;UÞ ¼ F ðuÞ þ pw
 swr rU
jrUj

� �

 EijkleijðuÞeklðwÞ;

ð12Þ

where bðu;w;UÞ describes the sensitivity of the objective function Jðu;UÞ with respect to the boundary

variation of the design.

Step 4: Calculate ‘‘speed function’’ VnðxÞ which defines the ‘‘speed’’ of propagation of all level sets of the

embedding function UðxÞ along the normal direction N of the IMB. In other words, we let VnðxÞ �
ðdx=dtÞNðxÞ ¼ 
Cðx;UÞNðxÞ (see Eq. (4)). This speed function is defined to satisfy the following equation:



Z
D
ðbðu;w;UÞ þ kþÞdðUÞWðxÞdX ¼

Z
D

l2ðxÞVnðxÞWðxÞdX ð13Þ

for any continuous function WðxÞ 2 C0ðDÞ.
Step 5: Solve the following standard level set equation to update the embedding function Uðx; tÞ:

oU
ot

¼ VnðxÞjrUj;

oU
on

joD ¼ 0:

ð14Þ

Step 6: Check if a termination condition is satisfied. If the condition is met, then a convergent solution is

found. Otherwise, repeat Steps 1–5 until convergence. The termination condition is defined asZ
D
jVnðxÞjdðUÞjrUjdX6 c;

where c is a specified error limit.

6. Conditions of the optimum solution

In this section we shall derive the necessary conditions for the optimum solution of Eq. (5) and show the

convergence characteristics of the algorithm described above. The topology optimization algorithm is

developed based on the following proposition:

Proposition 1. The series of embedding function fUðx; tiÞ; i ¼ 0; 1; 2; . . .g generated by the process of the
optimization algorithm are the descent series of the topology optimization problem (5).

We shall describe a proof of the proposition. First, we derive the Fr�eechet derivatives of the functions in
the optimization problem (8). For the energy bilinear form aðu; v;UÞ, the linear load form Lðv;UÞ, and the

volume measure V ðUÞ, their Fr�eechet derivatives are respectively given as

oaðu; v;UÞ
oU

;W

� �
¼

Z
D

dðUÞEijkleijðuÞeklðvÞWdX; ð15Þ

oaðu; v;UÞ
ou

; du
� �

¼ aðdu; v;UÞ; ð16Þ
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oLðv;UÞ
oU

;W

� �
¼

Z
D

dðUÞpvWdX þ
Z
D

d0ðUÞjrUjW
�

þ dðUÞrUrW
jrUj

�
dX

¼
Z
D

dðUÞ pv
�


 svr rU
jrUj

� ��
WdX þ

Z
D

dðUÞ
jrUj

oU
on

WdX; ð17Þ

oV ðUÞ
oU

;W

� �
¼

Z
D

dðUÞWdX: ð18Þ

For the objective function Jðu;UÞ its Fr�eechet derivatives are specified as:

oJðu;UÞ
oU

;W

� �
¼

Z
D

dðUÞF ðuÞWdX; ð19Þ

oJðu;UÞ
ou

; du
� �

¼
Z
D

oF ðuÞ
ou

HðUÞdudX ð20Þ

for any continuous function WðxÞ 2 C0ðDÞ.
In order to express Eq. (20) as a function of W explicitly, we solve the following conjugate equation and

obtain the adjoint displacement field w:

aðv;w;UÞ ¼
Z
D

oF ðuÞ
ou

HðUÞvdX; wjoDu
¼ 0 8v 2 U : ð21Þ

Thus, differentiating the equilibrium equation aðu; v;UÞ ¼ Lðv;UÞ with respect to U in the direction of W,

we obtain:

aðdu; v;UÞ ¼ oLðv;UÞ
oU

;W

� �

 oaðu; v;UÞ

oU
;W

� �
: ð22Þ

Substituting Eqs. (15), (17), (21) and (22) into (20) yields:

oJðu;UÞ
ou

; du
� �

¼
Z
D

dðUÞ pv
�


 svr rU
jrUj

� �

 EijkleijðuÞeklðwÞ

�
WdX þ

Z
D

dðUÞ
jrUj

oU
on

WdX: ð23Þ

Using the Lagrange multiplier method, we construct another objective function Jðu;UÞ and obtain a

completely equivalent problem to the original optimization problem (8) as follows:

Minimize
U

Jðu;UÞ ¼ Jðu;UÞ þ kþðV ðUÞ 
 VmaxÞ;

subject to : aðu; v;UÞ ¼ Lðv;UÞ; ujoDu
¼ u0; 8v 2 U ;

kþðV ðUÞ 
 VmaxÞ ¼ 0;

kþ P 0:

ð24Þ

Here kþ is the Lagrange multiplier and last two constraints define a complementarity condition: When the

inequality of V ðUÞ < Vmax is true, then kþ ¼ 0; Otherwise when V ðUÞ ¼ Vmax, kþ > 0. Thus, the Fr�eechet
derivative of the new objective function Jðu;UÞ becomes

dJðu;UÞ
dU

;W

� �
¼ oJðu;UÞ

ou
; du

� �
þ oJðu;UÞ

oU
;W

� �
þ kþ

oV ðUÞ
oU

;W

� �
: ð25Þ
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Substituting the relations (18), (19) and (23) into (25) leads to

dJðu;UÞ
dU

;W

� �
¼

Z
D

dðUÞ F ðuÞ
�

þ pw
 swr rU
jrUj

� �

 EijkleijðuÞeklðwÞ þ kþ

�
WdX

þ
Z
oD

dðUÞ
jrUj

oU
on

WdC ¼
Z
D

dðUÞðbðu;w;UÞ þ kþÞWdX þ
Z
oD

dðUÞ
jrUj

oU
on

WdC: ð26Þ

Thus, the Kuhn–Tucker condition of the optimization becomes

bðu;w;UÞ þ kþjoD ¼ 0;
oU
on

����
oD

¼ 0;

kþðV ðUÞ 
 VmaxÞ ¼ 0; kþ P 0:

ð27Þ

Let us choose a weighting function lðxÞ 6¼ 0 8x 2 D. We then can construct the speed function VnðxÞ as

follows:

Z
D

l2ðxÞVnðxÞWdX ¼ 

Z
D

dðUÞðbðu;w;UÞ þ kþÞWdX and VnjoD ¼ 0; 8W 2 C0ðDÞ: ð28Þ

This speed function VnðxÞ represents a non-local version of the exact sensitivity function (26) of the opti-

mization problem (24). Therefore, the series fUðx; tiÞg generated by using the following Hamilton–Jacobi

equation are the descent series of the optimization problem (5),

oU
ot

¼ VnjrUj; oU
on

����
oD

¼ 0: ð29Þ

As shown in Fig. 2, these equations define the movement of the level set models only along the normal

direction of the structural boundary driven by the normal speed Vn.
To finish off the proof we can determine the Lagrange multiplier kþ using the Kuhn–Tucker condition

(27). When kþ 6¼ 0, the constant volume condition dV ðUÞ=dt ¼ 0 leads to

Z
dðUÞVnjrUjdX ¼ 0: ð30Þ

Fig. 2. The movement of the structural boundary.

M.Y. Wang et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 227–246 235



Substituting Eq. (28) into Eq. (30) yieldsZ
D

d2ðxÞl
2ðxÞðbðu;w;UÞ þ kþÞjrUjdX ¼ 0: ð31Þ

Thus, we can obtain the Lagrange multiplier

kþ ¼ 

R
D dðUÞl
2ðxÞbðu;w;UÞjrUjdXR

D dðUÞl
2ðxÞjrUjdX
: ð32Þ

If Eq. (32) gives the multiplier that kþ < 0, we must set kþ ¼ 0 according to the single sided constraint
condition (24) or the Kuhn–Tucker condition (27).

Now, we derive the time derivative of the objective function of optimization (5) using Eqs. (19), (23) and

(29):

dJðu;UÞ
dt

¼ oJðu;UÞ
ou

;
oU
ot

� �
þ oJðu;UÞ

oU
;
oU
ot

� �
¼

Z
dðUÞbðu;w;UÞVnjrUjdX: ð33Þ

When applying Eq. (28), Eq. (33) becomes

dJðu;UÞ
dt

¼ 

Z
D

l2ðxÞV 2
n ðxÞjrUjdX 
 kþ

Z
D

dðUÞVnðxÞjrUjdX: ð34Þ

Considering the Kuhn–Tucker condition (27) and the volume constraint (30), the last term in Eq. (34) is

given to equal to zero. Thus, we conclude that

dJðu;UÞ
dt

6 0: ð35Þ

Here, the equality holds only for dðUÞVn ¼ 0. This concludes our proof for Proposition 1.

Furthermore, if we choose lðxÞ to be the kernel function of U and the kernel function is assumed to be a

soft type of the Dirac function such as the Gauss function, then the kernel characteristic parameter will

approach to zero in the series. This means that we can obtain the optimum conditions of the optimization

problem (5) from Eqs. (27) and (34) as follows:

bðu;w;UÞ þ kþjoD ¼ 0: ð36Þ
Thus,

kþ ¼ 

Z
oD

bðu;w;UÞdS
Z
oD

dS
�

and kþ becomes the average of the sensitivity bðu;w;UÞ along the entire design boundary oD. Moreover, we

may rewrite the boundary variation sensitivity bðu;w;UÞ as
bðu;w;UÞ ¼ F ðuÞ þ pw
 swj 
 EijkleijðuÞeklðwÞ; ð37Þ

where j ¼ rðrU=jrUjÞ and it is the mean curvature of the boundary surface. Therefore, we have the

following proposition.

Proposition 2. The necessary condition of the optimum solution to the topology optimization problem (5) is
that the boundary sensitivity bðu;w;UÞ keeps a constant everywhere on the boundary of the optimum structure
D.

7. Numerical implementation

There are a number of numerical issues that are important to the implementation of the proposed level

set method. In the algorithm presented here, the geometric boundary of the structure under optimization is
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described as the zero level set of Uðx; tÞ ¼ 0. In its numerical implementation, the embedding function
U may be represented in any convenient form. It is often described as a rectangular sampling on a recti-

linear grid of x over D [18]. Conventional interpolation functions may be used on a set of grid nodes,

such as

Uðx; tÞ ¼
X
i

/iðtÞNiðxÞ; ð38Þ

where /iðtÞ are the nodal values of the level set function and NiðxÞ describe the standard interpolation

functions. The nodal values are updated during the optimization procedure.

In general, the linear elastic equation (10) may be solved by a finite element method. In order to avoid

regenerating the element mesh when the boundary or Uðx; tÞ is modified or updated in the iterative process,

we use approximate functions for dðxÞ and HðxÞ as follows:

dðxÞ ¼
3ð1
 aÞ

4D
1
 x2

D2

� �
; jxj6D;

0; jxj > D;

8<
: ð39Þ

HðxÞ ¼
a; x < 
D;
3ð1
 aÞ

4

x
D

 x3

3D3

� �
þ 1þ a

2
; 
D6 x < D;

1; xP D;

8><
>: ð40Þ

where a is a small positive number to ensure that the numerical stiffness of Eq. (10) is nonsingular, and D
describes the width of numerical approximation for dðxÞ and HðxÞ as shown in Fig. 3.

Another issue is the discrete solution of the Hamilton–Jacobi equation (14). A highly robust and ac-

curate computational method was developed by Osher and Sethian [19] to address the problem of over-
shooting. Based on the notion of weak solutions and entropy limits, a so called ‘‘up-wind scheme’’ is

proposed to solve Eq. (14) with the following update equation

/nþ1
ijk ¼ /n

ijk 
 Dt½maxðVnij ; 0Þrþ þminðVnij ; 0Þr
� ð41Þ

with

rþ ¼ ½maxðD
x
ijk ; 0Þ

2 þminðDþx
ijk ; 0Þ

2 þmaxðD
y
ijk ; 0Þ

2 þminðDþy
ijk ; 0Þ

2 þmaxðD
z
ijk ; 0Þ

2 þminðDþz
ijk ; 0Þ

2�;

r
 ¼ ½maxðDþx
ijk ; 0Þ

2 þminðD
x
ijk ; 0Þ

2 þmaxðDþy
ijk ; 0Þ

2 þminðD
y
ijk ; 0Þ

2 þmaxðDþz
ijk ; 0Þ

2 þminðD
z
ijk ; 0Þ

2�:

Fig. 3. Numerically approximated (a) Heaviside function HðxÞ and (b) Dirac function dðxÞ.
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Here, Dt is the time step, and D�x
ijk , D

�y
ijk and D�z

ijk are the respective forward and back difference operators in

the three dimensions of x 2 R3 separately. In addition, the time steps Dt must be limited to ensure the

stability of the up-wind scheme (41). The Courant–Friedrichs–Lewy condition requires Dt to satisfy

Dtmax jVnijk j6Ds; ð42Þ

where Ds stands for the minimum grid space among the three dimensions [18]. Furthermore, in order to

obtain highly accurate numerical results, the level set function Uðx; tÞ is often initialized as the signed

distance function and satisfies the Eikonal equation

jrUðx; tÞj ¼ 1: ð43Þ

The up-wind solutions produce the motion of level set models over the entire range of the embedding,

i.e., for all values of U in (14). Since the optimum structural boundary is defined to be a single model, i.e., at

k ¼ 0, the calculation of solutions over the entire range of iso-values is unnecessary. This forms the basis for

‘‘narrow-band’’ schemes that solve Eq. (14) in a narrow band of the grid nodes that surround the level set of

interest [18–21], as illustrated in Fig. 4. While the up-wind scheme makes the level set method numerically
robust, the narrow-band scheme makes its computational complexity proportional to the boundary area of

the structure being optimized rather than the size of the volume in which it is embedded. These two major

numerical techniques make the level set method practically attracting. A complete discussion of these

schemes may be found in the literature of level set methods (e.g., [18–21]).

8. Numerical examples

In this section we present several examples of structural optimization obtained with the proposed al-

gorithm and implementation. The optimization problem of choice is the mean compliance problem that has

been widely studied in the relevant literature (e.g., [8,22]). The objective function of the problem is the strain

energy of the structure with a material volume constraint, i.e.,

JðuÞ ¼
Z
D
EijkleijðuÞeklðuÞdX: ð44Þ

For all examples, the material used is steel with a modulus of elasticity of 210 GPa and a Poisson�s ratio
of m ¼ 0:3. For clarity in presentation, the examples are in 2D ðx 2 R2Þ under plane stress condition. For all

Fig. 4. The narrow band of a level set of interest in a 2D case.
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Fig. 5. Results of the iteration in the level set optimization for the two-bar example with a solid initial design without any holes.

Fig. 6. Results of the iteration in the level set optimization for the two-bar example with a single hole in the initial design.
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cases, we use a ¼ 10
9 and D ¼ 2 in the numerical approximation of HðxÞ and dðxÞ (Fig. 3). In the implicit
description for the level set function U, the finite element nodes are used as the nodes of U and interpolation

functions similar to those of the finite element analysis are also used for U. In the narrow-band scheme, the

width of the computation band for U is set at two-grid length (Fig. 4).

Fig. 7. Results of the iteration in the level set optimization for the two-bar example with a perforated initial design.

Fig. 8. The strain energy and the volume ratio of the sequence of iterations for case of Fig. 5.
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8.1. Two-bar frame

As a verification of the structural optimization algorithm developed here, a simple classic problem of

two-bar frame is considered first. For this problem, its optimum-topology solution is known analytically to

consist of two beams at 45� to support the applied load to the fixed boundary wall. As shown in Fig. 5(a),

the design domain for the structural layout is a rectangular area of 2000 mm in height and 1000 mm in

width. A load of 40 kN is applied at the middle of the right edge. The volume ratio of the final design is

constrained to be 30%. For this example, a mesh of 62� 27 elements is used.

Fig. 9. The strain energy and the volume ratio of the sequence of iterations for case of Fig. 6.

Fig. 10. The strain energy and the volume ratio of the sequence of iterations for case of Fig. 7.
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Three different initial conditions are used for the level set based optimization. In the first case, the initial
embedding, Uðx; 0Þ, is set to be the complete domain of design of Fig. 5(a). The optimization process

automatically generates a hole as shown in Fig. 5(b), and the exterior and interior boundary shapes are

simultaneously changed. Fig. 5(b)–(e) shows some intermediate results of optimization iterations. The final

solution shown in Fig. 5(f) is identical to the analytical solution.

Next, a small hole is introduced in the initial design as shown in Fig. 6(a). During the process of op-

timization, an internal hole is again automatically generated while the existing interior and exterior

boundaries of the structure would evolve according to the level set speed function (Fig. 6(b)). The two holes

would then meet each other and merge into a single hole as shown in Fig. 6(c). This clearly illustrates the
power of the level set model to handle topological changes as well as shape changes during the course of

optimization. The process continues until the same final result is achieved (Fig. 6(f)).

It is experienced that the level set model converges to an optimum solution faster with an initial con-

dition of interior holes. In the third case of this example, 40 holes are uniformly distributed in the initial

Fig. 11. The optimization results for a cantilever beam: (a) volume ratio of 0.4 and (b) volume ratio of 0.3.
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design as shown in Fig. 7(a), representing an original perforated structure. During the process of optimi-
zation, many of these holes would merge yielding ‘‘Swiss-cheese’’ structures during iteration (Fig. 7(b)–(e)).

In the intermediate steps, some pieces of the structure may also break off to become separated. However,

they are eventually evolved to disappear (Fig. 7(d) and (e)), since they are physically meaningless. Again,

this illustrates the flexibility and the power of the level set model to handle drastic topological changes. The

process continues until the same final result is achieved (Fig. 7(f)).

For these three cases of different initial designs, we further illustrate the changes of the objective function

and the structure volume over the iteration, in Figs. 8–10 respectively. In all three cases, it is noted that the

optimization process reduces the structural volume in the early iterations to the specified lower limit. Then,
while the volume constraint is enforced, the mean compliance is minimized. It is interesting to point out

that the level set model converges faster with more perforations in the initial design. It takes about 80

iterations (Fig. 10) for the Swiss-cheese initial design of Fig. 7, compared to about 500 iterations (Fig. 8) for

the solid initial design of Fig. 5. In other words, the Swiss-cheese holes are ‘‘easier’’ to be ‘‘gobbled up’’ by

the level set evolution than a solid piece when the volume of the structure has to be reduced.

8.2. Cantilever beam

A cantilever beam of ratio 3:2 is loaded vertically at the bottom of its free end as shown in Fig. 11. Two

volume ratio constraints of 0.4 and 0.3 are considered respectively. Their initial designs and optimization

results are shown in Fig. 11(a:1–5) for 0.4 volume ratio and in Fig. 11(b:1–5) for 0.3 volume ratio re-

spectively. The final optimum solutions are nearly identical to what other researchers have obtained using a

homogenization based method (see [8,22]). A mesh of 32� 22 elements is used.

8.3. MBB beam

The third example is an MBB beam which is also a benchmark example in the topology optimization

and has previously been extensively used in the homogenization methods and the traditional boundary

Fig. 12. The MBB beam example with three different initial conditions.
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variation methods. A simply supported beam has a span of 2400 mm and a height of 400 mm, with a point

load of 20 kN applied at the middle span. Due to symmetry, only half of the structure is modeled with the

normal boundary conditions as shown in Fig. 12. The volume ratio is limited to 0.4. Three cases with

different initial designs are studied to show that the initial conditions have a strong influence on the path of
optimum solution but have little effect on the final optimal result. The iterative processes of the three cases

are illustrated in Fig. 12(a:1–4), (b:1–4), and (c:1–4) respectively. A mesh of 66� 22 elements is used.

8.4. Michell-type structures with multiple loads

An Michell-type structure is now considered with multiple loads at its bottom as shown in Fig. 13. The

volume ratio is 0.3. A mesh of 62� 122 quadrilateral elements is used for FEM analysis. In Fig. 13, the

structure has a fixed and a simple support at the bottom corners with P1 ¼ 30N and P2 ¼ 5N . The initial
design and some intermediate and the final optimization results are shown.

Fig. 13. A structure with multiple loads: (a) initial design, (b–g) intermediate results, and (h) final solution.
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9. Conclusions

We have presented a numerical method for structural shape and topology optimization. The method

relies on a novel approach to the representation of the design boundaries with level set models. A structural

optimization is formulated as a mathematical programming problem with a design objective and a set of

constraints, utilizing the level set models for the incremental shape changes. The movements of the IMBs of

the structure are driven by a transformation of the objective and the constraints into speed functions that

govern the level set propagation. The result is a 3D topology optimization technique that demonstrates
outstanding flexibility of handling topological changes, fidelity of boundary representation and degree of

automation, comparing favorably with other methods based on boundary variation or homogenization in

the literature.

The work presented in this paper is by no means complete. We have only implemented a direct and linear

speed function. We believe that a nonlinear speed function may substantially increase computational ef-

ficiency for a faster convergence. Other numerical techniques than the narrow band method may also have

a significant impact in improving the numerical accuracy and efficiency. The approach can certainly be

applied to other problems of structural optimization involving multi-physics and/or multi-domains.
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