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Abstract

The fuzzy-valued vector function is defined and then divergence, Laplace, and gradient operators are defined for fuzzy-valued 
vector functions and fuzzy-valued functions. Moreover, a fuzzy Riemann line integral and its fundamental theorem are introduced. 
To complete our discussion, fuzzy Green’s, fuzzy divergence, and fuzzy Green’s identity theorems are proved. In detail, a fuzzy 
Poisson equation is considered by discussion of fuzzy maximum and minimum principles. Also, the uniqueness and stability of the 
solution of a fuzzy Poisson equation are investigated as theorems. Finally, for more illustration, some examples are solved.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Differential equations with partial derivatives play an important role in modeling many physical phenomena, and 
in most branches of engineering. On the other hand, the lack of adequate information, uncertainties in the data, 
measurement errors, etc., result in uncertainties in provided models. These uncertainties in a differential equation can 
appear in every part of the equation, including the initial and boundary conditions, the coefficients in the equation, 
and the shape and dimension of the domain. Fuzzy modeling is an effective method for modeling problems with 
uncertainties in a way that can provide researchers with a more realistic view of the problem.

The fuzzy set theory was first introduced by Zadeh [25]. The concept of the fuzzy derivative was then studied by 
Chang and Zadeh [20]. Next, Dubois and Prade [10] extended the definition of the fuzzy derivative using Zadeh’s 
extension principle. One of the first definitions of difference and derivative for set-valued functions (H-difference and 
H-derivative) was given by Hukuhara [13]. These concepts were then extended by many authors and researchers, such 
as Puri and Ralescu [19] and Kaleva [15] in fuzzy differential equations. Bede and Gal [4] framed the concepts of weak 
and strong generalized differentiability. Despite some advantages, these definitions were associated with a number 
of shortcomings. To alleviate this weakness, Stefanini [22] proposed a generalization of the Hukuhara difference. 
Then Stefanini and Bede [24] introduced generalized Hukuhara-type differentiability concepts of the interval-valued 
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functions and studied interval differential equations with the differentiability concepts. Stefanini [23] developed a 
definition of difference called gH-difference, which was an extended definition of Hukuhara’s difference. Later, Bede 
and Stefanini [5] suggested a newer definition. This difference, called g-difference, was proposed for fuzzy-valued 
functions.

The methods of solving fuzzy ordinary and fuzzy partial differential equations were extended, parallel to the de-
velopment of fuzzy derivative definitions and concepts. From a historical point of view, fuzzy partial differential 
equations were first proposed by Buckley and Feuring [7]. Allahviranloo [1] proposed difference methods for solving 
partial differential equations, Faybishenko [11] proposed a fuzzy partial differential equation model for simulation 
of hydrogeologic system behavior, and Oberguggenberger [17] discussed weak and fuzzy solutions for the Burgers 
equation. In addition, Chen et al. [8] proposed an adaptive fuzzy algorithm for the calculation of fuzzy solutions of 
fuzzy partial differential equations. Furthermore, Jafelice et al. [14] introduced a fuzzy partial differential equation 
model for a biological phenomenon and computed its fuzzy solutions. The heat, wave, and Poisson equations, includ-
ing fuzzy number parameters, were introduced in [6]. Allahviranloo et al. [2] considered a fuzzy heat equation and 
presented its fuzzy solution based on the generalized Hukuhaha differentiability.

The present article investigates the existence, uniqueness, and stability of a fuzzy Poisson equation with Dirichlet 
boundary conditions, and provides its fuzzy fundamental solution. This solution is obtained by use of a Green’s 
function and the fuzzy Green’s identity. Both the Poisson equation and the Laplace equation (in the special case) are 
second-order elliptic equations, and they are the reduced form of the Navier–Stokes equation, and are capable of 
modeling many problems in the field of engineering and fluid mechanics, such as groundwater flow with recharge 
or depletion and petroleum simulation and the mechanics of stretched, loaded membranes, and in the study of the 
theory of torsion of prismatic elastic bodies [21]. These reduced equations are used to give better insight to solve the 
more complicated Navier–Stokes equation with various boundary conditions for various solution domains. Because 
of the importance of such equations and according to the aforementioned explanations, investigating a fuzzy Poisson 
equation can provide us with a more comprehensive and precise view for solving several problems.

This article is organized as follows: First, Section 2 expresses some basic concepts of the fuzzy differentiability 
and the fuzzy integration and their properties. Furthermore, we prove some new properties to be used in the article. In 
Section 3 we introduce a fuzzy-valued vector function, fuzzy gradient, fuzzy divergence, and fuzzy Laplace operators, 
and their properties. Then we give some examples to illustrate their concepts. In Section 4 we propose a fuzzy line 
integral and its fundamental theorem. Then the fuzzy Green’s theorem, fuzzy divergence theorem, and fuzzy Green’s 
identity are proved. We then present some numerical examples to demonstrate their applications. Finally, in Section 5, 
a fuzzy Poisson equation with Dirichlet boundary conditions is studied, and then its uniqueness and stability are 
proved by use of the maximum principle. The fundamental fuzzy solution for a fuzzy Poisson equation is introduced, 
and then the fundamental solution for a fuzzy Poisson equation on a two-dimensional disc is studied in detail.

2. Preliminaries

In this section we review the basic definitions and the theorems that are used in this study. Furthermore, we prove 
some new concepts.

We denote RF , the set of fuzzy numbers, that is, normal, fuzzy convex, upper semicontinuous, and compactly 
supported fuzzy sets that are defined over the real line. Let u ∈ RF be a fuzzy number; for 0 < α ≤ 1, the α-level set (or 

α-cut) of u is defined by [u]α =
{
x ∈ R

n
∣∣∣u(x) ≥ α

}
, and for α = 0 is defined by the closure of the support [u]0 =

cl
{
x ∈R

n
∣∣∣u(x) > 0

}
. We denote [u]α = [u−

α , u+
α ], so the α-level set [u]α is a closed interval for all α ∈ [0, 1].

If u, v ∈RF and λ ∈R, the addition and the scalar multiplication are defined as having the α-levels of [u + v]α =
[u]α + [v]α and [λu]α = λ[u]α , respectively.

A trapezoidal fuzzy number, denoted by u = (a, b, c, d), where a ≤ b ≤ c ≤ d , has α-cuts [u]α = [a + α(b − a),

d − α(d − c)] for 0 ≤ α ≤ 1; If b = c we have a triangular fuzzy number. The support of fuzzy number u is defined as 
follows:

supp(u) = cl
{
x ∈ R

n
∣∣∣u(x) > 0

}
,

where cl is the closure of set 
{
x ∈R

n
∣∣∣u(x) > 0

}
.
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Definition 2.1. ([23]) Let u, v ∈ RF be two fuzzy numbers. Then the gH-difference is the fuzzy number k, if it exists, 
such that

u �gH v = k ⇐⇒
{

(i) u = v + k,

or (ii) v = u + (−1)k.

In terms of α-levels we have we have [u �gH v]α = [min{u−
α − v−

α , u+
α − v+

α }, max{u−
α − v−

α , u+
α − v+

α }], and if the 
H-difference exists, then u � v = u �gH v. The conditions for the existence of w = u �gH v ∈RF are

case (i)

{
k−
α = u−

α − v−
α and k+

α = u+
α − v+

α , ∀α ∈ [0,1],
with k−

α increasing, k+
α decreasing, k−

α ≤ k+
α ,

case (ii)

{
k−
α = u+

α − v+
α and k+

α = u−
α − v−

α , ∀α ∈ [0,1].
with k−

α increasing, k+
α decreasing, k−

α ≤ k+
α .

It is easy to show that (i) and (ii) are both valid if and only if k is a crisp number.

Proposition 2.1. ([23]) Suppose that u, v ∈ RF are two fuzzy numbers. Then

1. If the gH-difference exists, it is unique.
2. u �gH v = u � v or u �gH v = −(v � u) whenever the statement on the right exists, especially, u �gH u =

u � u = 0.
3. If u �gH v exists in sense (i), then v �gH u exists in sense (ii) and vice versa.
4. (u + v) �gH v = u.
5. 0 �gH (u �gH v) = v �gH u.
6. u �gH v = v �gH u = k if and only if k = −k; moreover, k = 0 if and only if u = v.

Definition 2.2. ([5]) The generalized difference (or g-difference for short) of two fuzzy numbers u, v ∈ RF is defined 
by its level sets as

[u �g v]α = cl
⋃
β≥α

([u]β �gH [v]β), ∀α ∈ [0, 1],

where the gH-difference �gH is with interval operands [u]β and [v]β .

Remark 1. We assume that u �gH v ∈RF and furthermore u �gH v = u �g v.

Definition 2.3. ([16]) The Hausdorff distance between fuzzy numbers is given by D : RF ×RF −→ R
+ ∪ {0} as

D(u, v) = sup
α∈[0, 1]

d
(
[u]α , [v]α

)
= sup

α∈[0, 1]
max

{
|u−(α) − v−(α)|, |u+(α) − v+(α)|

}
,

where d is the Hausdorff metric. The metric space (RF , D) is complete, separable, and locally compact. Moreover, 
the Hausdorff distance has the following properties:

1. D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈RF .
2. D(λu, λv) = |λ|D(u, v), ∀λ ∈R, u, v ∈RF .
3. D(u ⊕ v, w ⊕ z) ≤ D(u, w) + D(v, z), ∀u, v, w, z ∈RF .
4. D(u � v, w � z) ≤ D(u, w) + D(v, z), as long as u � v and w � z exist, where u, v, w, z ∈ RF .

Definition 2.4. ([5]). Let f : [a, b] → RF and x0 ∈ (a, b), with f −(x; α) and f +(x; α) both differentiable at x0. 
Hence we say that

• f is [i − gH ]-differentiable at x0 if

f ′
i−gH (x0;α) = [(f −)′(x0;α) , (f +)′(x0;α)], 0 ≤ α ≤ 1, (1)
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• f is [ii − gH ]-differentiable at x0 if

f ′
ii−gH (x0;α) = [(f +)′(x0;α) , (f −)′(x0;α)], 0 ≤ α ≤ 1. (2)

Definition 2.5. ([24]) We say that a point x0 ∈ (a, b) is a switching point for the differentiability of f if in any 
neighborhood V of x0 there exist points x1 < x0 < x2 such that

type I at x1 (1) holds while (2) does not hold and at x2 (2) holds and (1) does not hold, or
type II at x1 (2) holds while (1) does not hold and at x2 (1) holds and (2) does not hold.

Definition 2.6. ([2].) Let f : [a, b] → RF and f ′
gH (x) be gH-differentiable at x0 ∈ (a, b). Moreover, there is no 

switching point on (a, b), and (f −)′(x; α) and (f +)′(x; α) are both differentiable at x0. We say that

• f ′
gH (x) is [i-gH ]-differentiable whenever the type of gH-differentiability f (x) and f ′

gH (x) is the same:

f ′′
i−gH (x0;α) = [(f −)′′(x0;α) , (f +)′′(x0;α)], 0 ≤ α ≤ 1;

• f ′
gH (x) is [ii − gH ]-differentiable if the type of gH-differentiability f (x) and f ′

gH (x) is different:

f ′′
ii−gH (x0;α) = [(f +)′′(x0;α) , (f −)′′(x0;α)], 0 ≤ α ≤ 1.

Definition 2.7. ([9].) Let f : [a, b] → RF . We say that f (x) is fuzzy Riemann integrable in I ∈ RF if for any ε > 0
there exists δ > 0 such that for any division P = {[u, v]; ξ} with the norms �(P ) < δ we have

D

( ∗∑
p

(v − u) 
 f (ξ), I

)
< ε,

where 
∑∗

p denotes the fuzzy summation and I indicates 
∫ b

a
f (x)dx.

Theorem 2.2. ([5].) If f is gH -differentiable with no switching point in the interval [a, b], then we have

b∫
a

f ′
gH (x)dx = f (b) �gH f (a).

Theorem 2.3. ([12]) Let I ⊆ R be an open interval and x ∈ I . Let f : I → RF and g : I → R. Suppose that g(x) is 
differentiable at x and the fuzzy function f (x) is gH-differentiable at x. Then

(f 
 g)′gH (x) = f ′
gH (x) 
 g(x) ⊕ f (x) 
 g′(x). (3)

Theorem 2.4. ([2].) Let I be an open interval in R. Consider g : I → ζ := g(I) ⊆ R is differentiable at x, and 
f : ζ → RF is gH-differentiable at the point g(x). Then we have following conditions:
If g′(x) > 0

(f ◦ g)′i−gH (x) = g′(x) 
 f ′
i−gH (g(x)),

(f ◦ g)′ii−gH (x) = g′(x) 
 f ′
ii−gH (g(x)).

If g′(x) < 0

(f ◦ g)′i−gH (x) = g′(x) 
 f ′
ii−gH (g(x)),

(f ◦ g)′ii−gH (x) = g′(x) 
 f ′
i−gH (g(x)).
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Definition 2.8. ([2].) A fuzzy-valued function f of two variables is a rule that assigns to each ordered pair of real 
numbers, (x, y), in a set D a unique fuzzy number denoted by f (x, y). The set D is the domain of f and its range is 
the set of values that f takes on, that is, {f (x, y)|(x, y) ∈ D}.

We show the parametric representation of the fuzzy-valued function f : D → RF by f (x, y; α) = [f −(x, y; α),

f +(x, y; α)], for all (x, y) ∈ D and α ∈ [0, 1].
Definition 2.9. ([2].) A fuzzy-valued function f : D → RF is said to be fuzzy continuous at (x0, y0) ∈ D if 
lim(x,y)→(x0,y0) f (x, t) = f (x0, y0). We say f is fuzzy continuous on D if f is fuzzy continuous at every point 
(x0, y0) in D.

Definition 2.10. ([2].) Let (x0, y0) ∈ D. Then the first generalized Hukuhara partial derivatives ([gH-p]-derivatives 
for short) of a fuzzy-valued function f (x, y) : D → RF at (x0, t0) with respect to variables x, y are the functions 
fxgH

(x0, y0) and fygH
(x0, y0) given by

fxgH
(x0, y0) = lim

h→0

f (x0 + h,y0) �gH f (x0, y0)

h
,

fygH
(x0, y0) = lim

k→0

f (x0, y0 + k) �gH f (x0, y0)

k
,

provided that fxgH
(x0, y0) and fygH

(x0, y0) ∈ RF .

Definition 2.11. ([2].) A fuzzy-valued function f (x, y) : D → RF at (x0, y0) with respect to variables x, y is 
[gH-p]-differentiable if

lim
h→0

D
(f (x0 + h,y0) �gH f (x0, y0)

h
,fxgH

(x0, y0)
)

→ 0, (4)

lim
k→0

D
(f (x0, y0 + k) �gH f (x0, y0)

k
, fygH

(x0, y0)
)

→ 0, (5)

respectively.

Definition 2.12. ([2].) Let f (x, y) : D → RF , and let (x0, y0) ∈ D and f −(x, y; α) and f +(x, y; α) be real-valued 
functions that are partially differentiable with respect to. x. We say that

• f (x, y) is [i − p]-differentiable with respect to x at (x0, y0) if

fxi−gH
(x0, y0;α) = [f −

x (x0, y0;α), f +
x (x0, y0;α)]. (6)

• f (x, y) is [ii − p]-differentiable with respect to x at (x0, y0) if

fxii−gH
(x0, y0;α) = [f +

x (x0, y0;α), f −
x (x0, y0;α)]. (7)

Definition 2.13. ([2].) For any fixed ξ0, we say that (ξ0, y) ∈ D is a switching point for the differentiability of f (x, y)

with respect to x if in any neighborhood V of (ξ0, y) there exist points (x1, y) < (ξ0, y) < (x2, y) such that

Type I at (x1, y) (6) holds while (7) does not hold and at (x2, y) (7) holds and (6) does not hold for all y, or
Type II at (x1, y) (7) holds while (6) does not hold and at (x2, y) (6) holds and (7) does not hold for all y.

Note 1. In this article we assume that we do not have a switching point unless mentioned otherwise.

Definition 2.14. ([2].) Let f (x, y) : D → RF , and let ∂xf (x, y) be [gH-p]-differentiable at (x0, y0) ∈ D with respect 
to x. Moreover, there is no switching point on D. We say that

• fxgH
(x, y) is [i − p]-differentiable with respect to x if the type of [gH-p]-differentiability of both f (x, y) and 

fxgH
(x, y) is the same:

fxxi−gH
(x0, y0;α) = [f −

xx(x0, y0;α), f +
xx(x0, y0;α)].
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• fxgH
(x, y) is [ii −p]-differentiable with respect to x if the type of [gH-p]-differentiability f (x, y) and fxgH

(x, y)

is different:

fxxii−gH
(x0, y0;α) = [f +

xx(x0, y0;α), f −
xx(x0, y0;α)].

Lemma 2.1. ([2].) Consider f :D → RF as a fuzzy continuous function. Assume that f is [gH-p]-differentiable with 
respect to x, with no switching point in the interval [a, b], and fuzzy continuous, then we have

b∫
a

fygH
(x, y) dy = f (x, b) �gH f (x, a).

Theorem 2.5. ([2].) Let f be a fuzzy-valued function such that f ′
gH (c) = 0 and the second gH-derivative of f exists 

on an open interval containing c.

1. If f ′′
gH (c) � 0, then c is a local minimum of f .

2. If f ′′
gH (c) ≺ 0, then c is a local maximum of f .

3. If 0 ∈ supp (f ′′
gH (c)), the test is inconclusive.

Lemma 2.2. 
∫ a

b
f (x, y) dx = � 

∫ b

a
f (x, y) dx, where � denotes the Hukuhara difference and f (x, y) is a fuzzy-

valued function.

Proof. According to Lemma 2.1 we know that

b∫
a

f (x, y) dx = F(b, y) �gH F(a, y),

where FxgH
(x, y) = f (x, y). Without loss of generality, suppose that �gH is case (i), so in terms of α-levels we have

[ b∫
a

f (x, y) dx

]
α

=
[ b∫

a

f −(x, y;α)dx ,

b∫
a

f +(x, y;α)dx

]

= [F−(b, y;α) − F−(a, y;α) , F+(b, y;α) − F+(a, y;α)],
taking into consideration 0 �

∫ b

a
f (x, y) dx = � 

∫ b

a
f (x, y) dx, where 0 is a singleton. Therefore in terms of α-levels 

we have

[
−

b∫
a

f −(x, y;α)dx , −
b∫

a

f +(x, y;α)dx

]
= [F−(a, y;α) − F−(b, y;α) , F+(a, y;α) − F+(b, y;α)]

=
[ a∫

b

f −(x, y;α)dx ,

a∫
b

f +(x, y;α)dx

]
=
[ a∫

b

f (x, y) dx

]
α

.

The proof of case (ii) is similar. �
Corollary 1. Under the assumption of Lemma 2.2, we also have

∫ a

b
f (x, y) dy = � 

∫ b

a
f (x, y) dy.

Definition 2.15. Let Z := f (x, y) be a fuzzy-valued function. Then f is gH-differentiable at (x0, y0) if � Z can be 
expressed in the form

� Z = fxgH
(x0, y0)
 � x ⊕ fygH

(x0, y0)
 � y + ε1 � x + ε2 � y, (8)

where ε1 → 0 and ε2 → 0 as (� x, � y) → 0.
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Note 2. Let � Z = f (x+ � x, y+ � y) �gH f (x, y) and � x = x(t+ � t) − x(t) and � y = y(t+ � t) − y(t).

Theorem 2.6. (The chain rule) Let Z := f (x, y) be a fuzzy-valued function, where x = x(t) and y = y(t) are differ-
entiable real-valued functions of t . Then f is a gH-differentiable function of t and we have

dz

dt
= fxgH


 dx

dt
⊕ fygH


 dy

dt
. (9)

Proof. By dividing both sides of equation (8) by � t , we obtain

� Z

� t
= fxgH


 � x

� t
⊕ fygH


 � x

� t
+ ε1

� x

� t
+ ε2

� y

� t
.

Let � t → 0; then � x, � y → 0 because of differentiability of x(t) and y(t). This means that ε1, ε2 → 0, and therefore 
the following result is obtained:

dZ

dt
= lim

�t→0

� Z

� t

= fxgH

 lim

�t→0

� x

� t
⊕ fygH


 lim
�t→0

� y

� t
+ lim

�t→0
ε1 lim

�t→0

� x

� t
+ lim

�t→0
ε1 lim

�t→0

� x

� t

= fxgH

 dx

dt
⊕ fygH


 dy

dt
+ 0 · dx

dt
+ 0 · dy

dt

= fxgH

 dx

dt
⊕ fygH


 dy

dt
. �

Remark 2. If r(t) = x(t)i + y(t)j, a ≤ t ≤ b, is a parametric curve where x(t) and y(t) are the real-valued functions 
and f (x, y) is a fuzzy-valued function, by setting z := f (r(t)), and according to Theorem 2.6, we obtain

f (r(t))

dt
= fxgH

(x, y) 
 dx

dt
⊕ fygH

(x, y) 
 dy

dt
.

Lemma 2.3. Assume that
∫ b

a
f (x, y) dx and

∫ b

a
g(x, y) dx exist, where f (x, y) and g(x, y) are the fuzzy-valued 

functions and H(x, y) ∈RF is defined as follows:

H(x,y) =
{

f (x, y) a ≤ b,

g(x, y) b ≤ c.

Then we have

c∫
a

H(x, y) dx =
b∫

a

f (x, y) dx ⊕
c∫

b

g(x, y) dx.

Proof. By use of the fuzzy integral properties and the definition of H(x, y), it is obvious that

c∫
a

H(x, y) dx =
b∫

a

H(x, y) dx ⊕
c∫

b

H(x, y) dx

=
b∫

a

f (x, y) dx ⊕
c∫

b

g(x, y) dx.

See [3]. �
Remark 3. These properties can be generalized for finite number integrals.
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Lemma 2.4. If f (x, y) and g(x, y) are the fuzzy-valued functions, then we have∫
f (x, y) dx �gH

∫
g(x, y) dx =

∫ (
f (x, y) �gH g(x, y)

)
dx. (10)

Proof. First we set F := ∫ f (x, y) dx and G := ∫ g(x, y) dx for short, and then according to Definition 2.1

F �gH G = K ⇒
{

(i) F = G ⊕ K,

(ii) G = F ⊕ (−1)k.

In terms of α-levels we have the following statements:
In case (i): [F−

α , F+
α ] = [G−

α + K−
α , G+

α + K+
α ], so K−

α = F−
α − G−

α and K+
α = F+

α − G+
α .

In case (ii): [G−
α , G+

α ] = [F−
α − K+

α , F+
α − K−

α ], so K−
α = F+

α − G+
α and K+

α = F−
α − G−

α .
If on the right side of equation (10), we put f := f (x, y) and g := g(x, y), by Definition 2.1 we have

f �gH g = k ⇒
{

(i) f = g ⊕ k,

(ii) g = f ⊕ (−1)k.

In terms of α-levels we have the following statements:
In case (i): k−

α = f −
α − g−

α and k+
α = f +

α − g+
α . So[∫

k dx

]
α

=
[∫

k−
α dx ,

∫
k+
α dx

]

=
[∫ (

f −
α − g−

α

)
dx ,

∫ (
f +

α − g+
α

)
dx

]

=
[∫

f −
α dx −

∫
g−

α dx ,

∫
f +

α dx −
∫

g+
α dx

]
= [F−

α − G−
α , F+

α − G+
α ] = [K−

α , K+
α ].

So (10) for case (i) exists.
In case (ii): k−

α = f +
α − g+

α and k+
α = f −

α − g−
α . So[∫

k dx

]
α

=
[∫

k−
α dx ,

∫
k+
α dx

]

=
[∫ (

f +
α − g+

α

)
dx ,

∫ (
f −

α − g−
α

)
dx

]

=
[∫

f +
α dx −

∫
g+

α dx ,

∫
f −

α dx −
∫

g−
α dx

]
= [F+

α − G+
α , F−

α − G−
α ] = [K−

α , K+
α ].

So (10) for case (ii) exists. �
Lemma 2.5. Suppose that if u ∈ RF and v is a singleton, then u ⊕ (−1)v = u �gH v in the sense of case (i), and 
if u is a singleton and v ∈RF , then u ⊕ (−1)v = u �gH v in the sense of case (ii).

Proof. First, we suppose that case (i) holds. In terms of α-levels we have

[u ⊕ (−1)v]α = [u−
α + (−1)v+

α , u+
α + (−1)v−

α ]
= [u−

α − v+
α , u+

α − v−
α ].

Also in case (i) we have

[u �gH v]α = [u−
α − v−

α ,u+
α − v+

α ].
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Because v is a singleton, v− = v+. Hence the first statement holds. Now we assume that case (ii) exists. In terms 
of α-levels we get

[u �gH v]α = [u+
α − v+

α ,u−
α − v−

α ].
Because u is a singleton, u− = u+. Thus the second statement holds. �
3. Fuzzy-valued vector function

In what follows, we first define a fuzzy-valued vector function and introduce its properties. Then we propose a 
fuzzy gradient, a fuzzy divergence, and a fuzzy Laplace operator. We end this section with some examples to illustrate 
their concepts.

Definition 3.1. Let D be a set in R
2 (D ⊆R

2); p(x,y) and q(x,y): D → RF are the fuzzy-valued functions and i = 〈1, 0〉
and j = 〈0, 1〉 are standard basis vectors on a two-dimensional plane region. F(x, y) is a two-dimensional fuzzy-valued 
vector function, and we can show it in terms of its fuzzy-valued function components as follows:

F(x,y) = p(x,y)i ⊕ q(x,y)j = 〈p(x,y) , q(x,y)〉
(or for short, F = pi ⊕ qj = 〈p, q〉 ). This means that p(x, y), q(x, y) ∈ RF are fuzzy-valued function components on 
the x-coordinate and the y-coordinate, respectively. As a result, F ∈RF ×RF .

Note 3. Briefly 〈 . , . 〉 denotes the vector-valued function.

Proposition 3.1. Let F = 〈f1, f2〉 and G = 〈g1, g2〉 be two fuzzy-valued vector functions under the assumption of 
Definition 3.1, and c ∈R is a scalar. We have

1. F ⊕ G = 〈f1 ⊕ g1, f2 ⊕ g2〉 .
2. c 
 F = 〈c 
 f1, c 
 f2〉 .
3. F �gH G = 〈f1 �gH g1, f2 �gH g2〉 .

Proof. In the sense of Definition 3.1 f1, f2, g1, g2 : D → RF and f−1 (x, y; α), f+1 (x, y; α), f−2 (x, y; α), f+2 (x, y; α), 
g−

1 (x, y; α), g+
1 (x, y; α), g−

2 (x, y; α), and g+
2 (x, y; α) are the real-valued functions for all (x, y) ∈ D and α ∈ (0, 1]. 

Then

1. F ⊕ G = 〈f1, f2〉 ⊕ 〈g1, g2〉. In terms of α-levels we have

[F ⊕ G]α = Fα + Gα

= 〈(f−1 (x, y;α), f+1 (x, y;α)) , (f−2 (x, y;α), f+2 (x, y;α)〉〉
+ 〈(g−

1 (x, y;α),g+
1 (x, y;α)) , (g−

2 (x, y;α),g+
2 (x, y;α))

〉
= 〈(f−1 (x, y;α), f+1 (x, y;α)) + (g−

1 (x, y;α),g+
1 (x, y;α)) ,(

f−2 (x, y;α), f+2 (x, y;α)) + (g−
2 (x, y;α),g+

2 (x, y;α))
〉

= 〈(f−1 (x, y;α) + g−
1 (x, y;α), f+1 (x, y;α) + g+

1 (x, y;α)) ,

(f−2 (x, y;α) + g−
2 (x, y;α), f+2 (x, y;α) + g+

2 (x, y;α))
〉

= 〈f1(x, y;α) + g1(x, y;α) , f2(x, y;α) + g2(x, y;α)〉 .

Hence the first statement exists.
2. For second case, first we suppose that c ≥ 0:

[c 
 F ]α = c · Fα

= c · 〈f1(x, y;α) , f2(x, y;α)〉
= c · 〈(f−(x, y;α), f+(x, y;α)) , (f−(x, y;α), f+(x, y;α))〉
1 1 2 2
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= 〈c · (f−1 (x, y;α), f+1 (x, y;α)) , c · (f−2 (x, y;α), f+2 (x, y;α))〉
= 〈(c · f−1 (x, y;α), c · f+1 (x, y;α)) , (c · f−2 (x, y;α), c · f+2 (x, y;α))〉
= 〈c · f1(x, y;α) , c · f2(x, y;α)〉 .

If we suppose that c < 0, then we have

[c 
 F ]α = c · Fα

= c · 〈f1(x, y;α) , f2(x, y;α)〉
= c · 〈(f−1 (x, y;α), f+1 (x, y;α)) , (f−2 (x, y;α), f+2 (x, y;α))〉
= 〈c · (f−1 (x, y;α), f+1 (x, y;α)) , c · (f−2 (x, y;α), f+2 (x, y;α))〉
= 〈(c · f+1 (x, y;α), c · f−1 (x, y;α)) , (c · f+2 (x, y;α), c · f−2 (x, y;α))〉
= 〈c · f1(x, y;α) , c · f2(x, y;α)〉 .

Therefore the second statement is true.
3. For last case, based on Definition 2.1 we have

F �gH G = K ⇒
{

(i) F = K ⊕ G,

(ii) G = F ⊕ (−1) · K,

where K ∈RF is fuzzy-valued vector function and K = 〈k1, k2
〉
. If case (i) exists, then

F = K ⊕ G = 〈k1 , k2〉 ⊕ 〈g1 , g2〉,
and on account of the first part of Proposition 3.1 we obtain

F = 〈f1 , f2〉 = 〈k1 ⊕ g1 , k2 ⊕ g2〉 .

If case (ii) exists, we have

G = F ⊕ (−1) · k = 〈f1 , f2〉 ⊕ (−1) · 〈k1 , k2〉.
In terms of α-levels we have

[〈f1, f2〉 ⊕ (−1) · 〈k1, k2〉
]
α

. By using the first and the second parts of Proposi-
tion 3.1, we obtain

〈(f −
1 (x, y;α),f +

1 (x, y;α)
)
,
(
f −

2 (x, y;α),f +
2 (x, y;α)

)〉
+ 〈(− k+

1 (x, y;α) , − k−
1 (x, y;α)

)
,
(− k+

2 (x, y;α) , − k−
2 (x, y;α)

)〉
=
〈(

f −
1 (x, y;α) + (− k+

1 (x, y;α)
)
, f +

1 (x, y;α) + (− k−
1 (x, y;α)

))
,(

f −
2 (x, y;α) + (− k+

2 (x, y;α)
)
, f +

2 (x, y;α) + (− k−
2 (x, y;α)

))〉
= 〈f1(x, y;α) + (−1)k1(x, y;α) , f2(x, y;α) + (−1)k2(x, y;α)〉
= 〈g1(x, y;α) , g2(x, y;α)〉 .

Hence the third part of this proposition is established. �
Definition 3.2. (The inner product between two fuzzy-valued vector functions) If F(x, y) = 〈f1, f2〉 and G(x, y) =
〈g1, g2〉 are two fuzzy-valued vector functions defined by Definition 3.1, then the inner product of F and G is a 
fuzzy-valued function, given by

F � G = (f1 
 g1) ⊕ (f2 
 g2) ,

where � is fuzzy inner product of F and G.
We define two fuzzy-valued functions P(x, y) and Q(x, y) by f1 
 g1 := P and f2 
 g2 := Q. Then we observe 

that for all 0 < α ≤ 1
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[f1 
 g1]α = [P ]α = [P −
α , P +

α ],
where

P −
α = min{u · v | u ∈ [f1]α , v ∈ [g1]α},

P +
α = max{u · v | u ∈ [f1]α , v ∈ [g1]α}.

Furthermore,

[f2 
 g2]α = [Q]α = [Q−
α , Q+

α ],
where

Q−
α = min {u · v | u ∈ [f2]α , v ∈ [g2]α},

Q+
α = max {u · v | u ∈ [f2]α , v ∈ [g2]α}.

Hence for all 0 < α ≤ 1 we have

[F � G]α = [P −
α , P +

α ] + [Q−
α , Q+

α ].

Definition 3.3. (The inner product between a real-valued vector function and a fuzzy-valued vector function) 
If F(x, y) = 〈f1, f2〉 is a fuzzy-valued vector function defined by Definition 3.1 and h(x, y) is a real-valued vec-
tor function given by h(x, y) = h1(x, y)i + h2(x, y)j, where h1, h2 ∈R, then the inner product between h and F is a 
fuzzy-valued function given by

h � F = (h1 
 f1) ⊕ (h2 
 f2).

In terms of α-levels [F ]α = 〈[f1]α, [f2]α〉. We have

h1 · [f1]α =
⎧⎨
⎩
(
h1 · f −

α1
, h1 · f +

α1

)
, h1(x, y) ≥ 0,(

h1 · f +
α1

, h1 · f −
α1

)
, h1(x, y) < 0

and

h2 · [f2]α =
⎧⎨
⎩
(
h2 · f −

α2
, h2 · f +

α2

)
, h2(x, y) ≥ 0,(

h2 · f +
α2

, h2 · f −
α2

)
)
, h2(x, y) < 0.

As a consequence we obtain h(x, y) · [F ]α = h1 · [f1]α + h2 · [f2]α .

Definition 3.4. (Gradient of a fuzzy-valued function) If f (x, y) ∈ RF is a fuzzy-valued function on R
2, the gradient 

of f (x, y), or gradf (x, y), is defined by

gradf (x, y) = ∇f (x, y) = fx(x, y)i ⊕ fy(x, y)j = 〈fx , fy〉.
This means that gradf (x, y) is a fuzzy-valued vector function and we have the following conditions:

• If fx and fy are [i − p]-gH differentiable at (x0, y0), gradf (x, y) is denoted by ∇1,1f .
• If fx and fy are [ii − p]-gH differentiable at (x0, y0), gradf (x, y) is denoted by ∇2,2f .
• If fx is [i −p]-gH differentiable and fy is [ii −p]-gH differentiable at (x0, y0), gradf (x, y) is denoted by ∇1,2f .
• If fx is [ii −p]-gH differentiable and fy is [i −p]-gH differentiable at (x0, y0), gradf (x, y) is denoted by ∇2,1f .

Note 4. The gradient of the fuzzy-valued function is denoted briefly by gradf (x, y) = ∇i,j f , {i, j} ∈ {1, 2}.

Note 5. ∇ = ( ∂
∂x

)i ⊕ ( ∂
∂y

)j is a linear operator on the fuzzy-valued functions.

Remark 4. Since in some cases we have no idea about the type of gradient of fuzzy-valued functions, we generally 
use ∇f for short.
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Definition 3.5. (Divergence of a fuzzy-valued vector function) If F(x, y) = P(x, y)i ⊕ Q(x, y)j is a fuzzy-valued 
vector function defined by Definition 3.1, divergence of F(x, y), or divF , is defined by divF(x, y) = Px(x, y) ⊕
Qx(x, y). In terms of the gradient operator defined by Remark 5, the divergence of F(x, y) can be written symbolically 
as the fuzzy inner product of ∇ and F(x, y) as follows:

divF = ∇ � F.

Note 6. div = ( ∂
∂x

) ⊕ ( ∂
∂y

) is an operator.

Since ∇f is a fuzzy-valued vector function, by Definition 3.3 we obtain the following properties:

div (∇f ) = ∇ � (∇f )

= ∂

∂x

(
∂f

∂x

)
⊕ ∂

∂y

(
∂f

∂y

)

= ∂2f

∂x2 ⊕ ∂2f

∂y2 .

We can express these properties as ∇2f , where ∇2 = ∇ �∇ . ∇2 is called the Laplace operator. We can apply ∇2 to 
fuzzy vector F(x, y) = P(x, y)i ⊕ Q(x, y)j in terms of its components. Hence we have ∇2F = ∇2P ⊕ ∇2Q.

Lemma 3.1. Let U(x, y) be a fuzzy-valued function and g(x, y) be a real-valued function, where ∂g
∂x

and ∂g
∂y

have the 
same sign. Then

∇ � (U 
 g) = ∇i,jU 
 g ⊕ U 
 ∇g,

where {i, j} ∈ {1, 2}.
Proof. According to Definition 3.5 and Theorem 2.3 and because of the linearity of the divergence operator we have

(
∂

∂x
⊕ ∂

∂y
) � (U 
 g) = ∂

∂x
(U 
 g) ⊕ ∂

∂y
(U 
 g)

=
(

(
∂U

∂x

 g) ⊕ (U 
 ∂g

∂x
)

)
⊕
(

(
∂U

∂y

 g) ⊕ (U 
 ∂g

∂y
)

)

=
(

(
∂

∂x
⊕ ∂

∂y
) � U

)

 g ⊕

(
U 
 (

∂g

∂x
+ ∂g

∂y
)

)
= ∇i,jU 
 g ⊕ U 
 ∇g,

for {i, j} ∈ {1, 2}. �
Definition 3.6. (Laplace operator of a fuzzy-valued function) If f (x, y) is a fuzzy-valued function, and if f (x, y)

is [i, ii − p]-gH differentiable and fxx and fyy exist, ∇2f (x, y) = ∂2f

∂x2 ⊕ ∂2f

∂y2 is the Laplace operator of f (x, y). 
Therefore we have four conditions:

• If fxx and fyy are [i − p]-gH differentiable, the Laplace operator of f (x, y) is denoted by ∇2
1,1f .

• If fxx and fyy are [ii − p]-gH differentiable, the Laplace operator of f (x, y) is denoted by ∇2
2,2f .

• If fxx is [i −p]-gH differentiable and fyy is [ii −p]-gH differentiable, the Laplace operator of f (x, y) is denoted 
by ∇2

1,2f .
• If fxx is [ii −p]-gH differentiable and fyy is [i −p]-gH differentiable, the Laplace operator of f (x, y) is denoted 

by ∇2
2,1f .

Example 3.1. Consider the fuzzy-valued function f (x, y) = λy2 sinx, where λ is a fuzzy number and f (x, y) :
[0, π2 ] ×R

+ →RF ; thus fxgH
= λy2 cosx is [i−p]-gH differentiable and fxxgH

= −λy2 sinx is [ii−p]-gH differen-
tiable. Also fygH

= 2λy sinx is [i − p]-gH differentiable and fyygH
= 2λ sinx is [i − p]-gH differentiable. Therefore 

gradf (x, y) is denoted by ∇1,1f and the Laplace operator of f (x, y) is denoted by ∇2 f .
2,1
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Fig. 1. Graph of Example 3.2: gradient of f (x, y) for α = 1
2 (left) and Laplace operator of f (x, y) for α = 1

2 (right).

Example 3.2. Consider the fuzzy-valued function f (x, y) = λe−y sinx, where λ is a fuzzy number and f (x, y) :
[0, π] ×R

+ → RF ; therefore fxgH
= λe−y cosx is [i − p]-gH differentiable in 0 ≤ x < π

2 and [ii − p]-gH differen-
tiable in π

2 < x ≤ π , and fxxgH
= −λe−y sinx is [ii − p]-gH differentiable in 0 ≤ x ≤ π . Thus x = π

2 is the type I 
switching point for ∂xgH

f (x, y) and we do not have a switching point for ∂xxgH
f (x, y) in 0 ≤ x ≤ π, y ∈R

+.
On the other hand, fygH

= −λe−y sinx is [ii − p]-gH differentiable in 0 ≤ x ≤ π , and fyygH
= λe−y sinx is 

[i − p]-gH differentiable in 0 ≤ x ≤ π . Namely, we do not have a switching point for ∂ygH
f (x, y) and ∂yygH

f (x, y)

in 0 ≤ x ≤ π, y ∈R
+.

Hence in view of the statements expressed, in 0 ≤ x ≤ π
2 , gradf (x, y) is denoted by ∇1,2f and the Laplace 

operator of f (x, y) is denoted by ∇2
2,1f , and in π

2 ≤ x ≤ π , gradf (x, y) is denoted by ∇2,2f and the Laplace 
operator of f (x, y) is denoted by ∇2

2,1f (see Fig. 1).

4. Fuzzy Green’s identity

In this section we propose the fuzzy line integral and its fundamental fuzzy theorem. Then we prove the fuzzy 
Green’s theorem, the fuzzy divergence theorem, and the fuzzy Green’s identity. Moreover, some examples are given 
to show the applications and the efficiency of the proposed concepts.

Definition 4.1. If f (x, y) is a fuzzy-valued function defined on smooth curve C given by the parametric curve equa-
tion r(t) = x(t)i+y(t)j, a ≤ t ≤ b, where r ′(t) �= 0 is continuous and x(t) and y(t) are real-valued functions, then the 
fuzzy Riemann line integral of f (x, y) along C is Ic = ∫

C
f (x, y) ds if for any ε > 0 there exists δ > 0 such that for 

any division S = {[si−1, si], ζ = (x∗
i , y∗

i )
}

on C and � si = si − si−1 with the norms of subarcs � si < δ we have

D

( ∗∑
s

(si − si−1) 
 f (ζ ) , Ic

)
< ε, (11)

where
∗∑
s

denotes the fuzzy summation.

Note 7. We divide C into n subarcs � si , so [a, b] is divided into n subintervals [ti−1, ti], where t∗i ∈ [ti−1, ti]. Then we 
choose corresponding points x∗

i = x(t∗i ) and y∗
i = y(t∗i ) in the ith subarcs.

If f (x, y) is a fuzzy continuous function, then (11) exists, and we can calculate the fuzzy line integral with respect 
to arc length as
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∫
C

f (x, y) ds =
b∫

a

f (x(t), y(t)) 

√(

dx

dt

)2

+
(

dy

dt

)2

dt, (12)

where if s(t) is the length of C between r(a) and r(t), then ds = |r ′(t)| =
√(

dx
dt

)2 +
(

dy
dt

)2
dt .

Example 4.1. Consider 
∫
C

(u ⊕ v 
 x2y)ds, where u and v are fuzzy numbers defined in terms of α-level by uα =
[−1 + 3α, 5 − 2α] and vα = [1 + 2α, 4 − α], and C is the upper half of the unit circle x2 + y2 = 1.

The parametric equations of C are x = cos t , y = sin t , 0 ≤ t ≤ π . Therefore we have

∫
C

(u ⊕ v 
 x2y) ds =
π∫

0

(u ⊕ v 
 cos2 t sin t) 

√

sin2 t + cos2 t dt

=
π∫

0

u dt ⊕
π∫

0

(v 
 cos2 t sin t) dt

= u 
 t

]π

0
⊕ v 
 (

− cos3 t

3
)

]π

0
.

Hence the answer by α-levels is [−1 + 3α, 5 − 2α]π + 2
3 [1 + 2α, 4 − α].

Remark 5. We can express the fuzzy line integral with respect to x and y by the following formulas:

∫
C

f (x, y) dx =
b∫

a

f (x(t), y(t)) 
 x′(t) dt, (13)

∫
C

f (x, y) dy =
b∫

a

f (x(t), y(t)) 
 y′(t) dt. (14)

Definition 4.2. Suppose that F(x, y) = P(x, y)i ⊕ Q(x, y)j is a fuzzy-valued vector function defined by Defini-
tion 3.1. If the curve C is given by the vector parametric equation r(t) = x(t)i + y(t)j, a ≤ t ≤ b, where r ′(t) �= 0 and 
F(x, y) is continuous on C, we have

∫
C

F(x, y) dr =
∫
C

F(x, y) � T (t) ds =
b∫

a

F (r(t)) � r ′(t) dt, (15)

where T (t) = r ′(t)
|r(t)| is the unit tangent vector.

Example 4.2. To find the work done by the force field F(x, y) = u 
 −x2 i ⊕ v 
 y j (where u and v are fuzzy 
numbers defined in terms of α-level by uα = [0.2 + 0.6α, 1.5 − 0.7α] and vα = [0.5 + 1.5α, 3 − α]) on moving a 
particle along the upper half circle r(t) = cos t i + sin t j, 0 ≤ t ≤ π , we must evaluate

∫
C

F(x, y) dr .

Since x = cos t, y = sin t we get F((r(t)) = u 
 − cos2 t i ⊕ v 
 sin t j and r ′(t) = − sin t i + cos t j. In view of 
Definition 3.3 we have F(r(t)) � r ′(t) = (u 
 cos2 t sin t) ⊕ (v 
 cos t sin t), where{

cos2 t sin t ≥ 0 , cos t sin t ≥ 0, 0 ≤ t ≤ π
2 ,

cos2 t sin t ≥ 0 , cos t sin t ≤ 0, π ≤ t ≤ π.
2
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Therefore∫
C

F(x, y) dr =
π∫

0

F (r(t)) � r ′(t) dt

=
π
2∫

0

(
(u 
 cos2 t sin t) ⊕ (v 
 cos t sin t)

)
dt ⊕

π∫
π
2

(
(u 
 cos2 t sin t) ⊕ (v 
 cos t sin t)

)
dt

= (u 
 − cos3 t

3
) ⊕ (v 
 − cos2 t

2
)

] π
2

0
⊕ (u 
 − cos3 t

3
) ⊕ (v 
 − cos2 t

2
)

]π

π
2

= (u 
 1

3
⊕ v 
 1

2
) ⊕ (u 
 1

3
⊕ v 
 −1

2
).

Hence the answer by α-level is 
(

[0.2 + 0.6α, 1.5 − 0.7α] · 1
3 + [0.5 + 1.5α, 3 − α] · 1

2

)
+
(

[0.2 + 0.6α,

1.5 − 0.7α] · 1
3 + [3 − α, 0.5 + 1.5α] · −1

2

)
.

Remark 6. The parametric equation of C (x = x(t), y = y(t), a ≤ t ≤ b) denotes an orientation with a positive 
direction corresponding to increasing value of t . Thus −C denotes the same points as curve C but with opposite 
orientation. Therefore we have

∫
-C

f (x, y) dx = � 
∫
C

f (x, y) dx and 
∫
-C

f (x, y) dy = � 
∫
C

f (x, y) dy.

Remark 7. 
∫
-C

f (x, y) ds = ∫
C

f (x, y) ds, because by Definition 4.1, when we reverse the orientation of C, � si ≥ 0

for all i.

Lemma 4.1. Suppose that C is a piecewise-smooth curve and F(x, y) is a fuzzy-valued function defined as follows:

F(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x, y) on C1,

f2(x, y) on C2,
...

...

fn(x, y) on Cn,

where fi(x, y) ∈ RF , 1 ≤ i ≤ n, and Ci , 1 ≤ i ≤ n, are smooth curves. Since curve C is a union of C1, C2, . . . , Cn, we 
have ∫

C

F(x, y) dr =
∫
C1

f1(x, y) dr ⊕
∫
C2

f2(x, y) dr ⊕ . . . ⊕
∫
Cn

fn(x, y) dr. (16)

Proof. The proof is almost identical to the proof of Lemma 2.3. �
Theorem 4.1. (The fundamental theorem for the fuzzy line integral) Let f (x, y) be a differentiable fuzzy-valued func-
tion on R2 and C be a smooth curve defined in Definition 4.1. Suppose that the gradient of f (x, y) is continuous on C
for any type (∇i,j f , {i, j} ∈ {1, 2} exist). Then∫

C

∇i,j f (x, y) dr = f (r(b)) �gH f (r(a)) {i, j} ∈ {1,2}. (17)

Proof. In view of Definition 4.2 we get

∫
∇i,j f (x, y) dr =

b∫
∇i,j f (r(t)) � r ′(t) dt.
C a
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First we suppose that ∇i,j f := ∇2,1f . According to Definition 3.3 we obtain

∫
C

∇2,1f (x, y) dr =
b∫

a

(
fxii−gH


 x′(t)
)⊕ (fyi−gH


 y′(t)
)

dt.

Consequently by Theorem 2.4 we obtain the following conditions:

1. If x′(t), y′(t) > 0: 
∫ b

a

(
fxii−gH


 x′(t)
)⊕ (fyi−gH


 y′(t)
)

dt .

2. If x′(t), y′(t) < 0: 
∫ b

a

(
fxi−gH


 x′(t)
)⊕ (fyii−gH


 y′(t)
)

dt .

3. If x′(t) > 0, y′(t) < 0: 
∫ b

a

(
fxii−gH


 x′(t)
)⊕ (fyii−gH


 y′(t)
)

dt .

4. If x′(t) < 0, y′(t) > 0: 
∫ b

a

(
fxi−gH


 x′(t)
)⊕ (fyi−gH


 y′(t)
)

dt .

It is evident from Theorem 2.6 and Lemma 2.1 that

∫
C

∇2,1f (x, y) dr =
b∫

a

d

dt
f (r(t)) dt = f (r(b)) �gH f (r(a)) .

The proof of another type of gradient is similar to this one. So equation (17) exists. �
Example 4.3. Suppose that f (x, y) = u 
 x ⊕ v 
 yx2, where u and v are the fuzzy numbers defined in terms of 
α-level by uα = [1 + 2α, 6 − 3α] and vα = [−1 + 3α, 5 − 3α], and r(t) = sin t i + cos t j, 0 ≤ t ≤ π

2 . Then ∇1,1f =
u i ⊕ v 
 x2 j and f

(
r(t)
)= (u 
 sin t) ⊕ (v 
 sin2 t cos t). Because of the statement expressed and Theorem 4.1 we 

conclude that∫
C

∇1,1f (x, y) dr = f (r(
π

2
)) �gH f (r(0))

= u �gH 0 = u,

where 0 is a singleton and the answer by α-level is [1 + 2α, 6 − 3α].

Theorem 4.2. (Fuzzy Green’s theorem) Let C be a positively oriented, piecewise-smooth, simple closed curve and 
D be the region bounded by C. Suppose that P(x, y) and Q(x, y) are fuzzy-valued functions on R

2 whose partial 
derivatives are continuous on an open region that contains D. Then∮

C

P (x, y) dx ⊕ Q(x,y) dy =
∫∫
D

Qx(x, y) �gH Py(x, y) dA. (18)

Proof. If we prove the following equations, we can obtain (18):∮
C

P (x, y) dx = �gH

∫∫
D

Py(x, y) dA (19)

and ∮
C

Q(x, y) dy =
∫∫
D

Qx(x, y) dA. (20)

To prove (19) we express D as a type region D = {(x, y)| a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}, where a, b ∈ R
2 and 

g1(x), g2(x) are real-valued continuous functions. Hence, by using Lemma 2.1, we have
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∫∫
D

Py(x, y) dA =
b∫

a

g2(x)∫
g1(x)

Py(x, y) dy dx

=
b∫

a

P (x, g2(x)) �gH P (x,g1(x)) dx. (21)

Now we evaluate the left side of (19) by breaking up C as the union of four curves: C1, C2, C3, C4. On C1 we take 
x as the parameter and obtain the parametric equations as x = x and y = g1(x), a ≤ x ≤ b. Thus 

∫
C1

P(x, y) dx =
∫ b

a
P (x, g1(x)) dx. Notice that C3 goes from right to left, and we can write the parametric equations of −C3 as x = x

and y = g2(X), a ≤ x ≤ b. Therefore according to Remark 6 and Lemma 2.2,

∫
C3

P(x, y) dx = �
∫

−C3

P(x, y) dx = �
b∫

a

P (x, g2(x)) dx.

On C2 and C4, x is constant, so dx = 0 and we have∫
C3

P(x, y) dx =
∫
C4

P(x, y) dx = 0.

Hence according to Lemma 4.1∮
C

P (x, y) dx =
∫
C1

P(x, y) dx ⊕
∫
C2

P(x, y) dx ⊕
∫
C3

P(x, y) dx ⊕
∫
C4

P(x, y) dx

=
b∫

a

P (x, g1(x)) dx ⊕ �
b∫

a

P (x, g2(x)) dx.

Consider 0 �gH

∮
C

P (x, y) dx = �gH

∮
C

P (x, y) dx. We get

�gH

∮
C

P (x, y) dx =
b∫

a

P (x, g2(x)) dx �gH

b∫
a

P (x, g1(x)) dx.

Hence (19) is proved.
By defining D as the region D = {(x, y)| f1(y) ≤ x ≤ f2(y), a ≤ y ≤ b}, where a, b ∈ R and f1(y), f2(y) ∈ RF , 

we can prove (20) in the same way:

∫∫
D

Qx(x, y) dA =
b∫

a

f2(y)∫
f1(y)

Qx(x, y) dx dy

=
b∫

a

Q(f1(y), y) �gH Q(f2(y), y) dy. (22)

We break up C as the union of four curves: C1, C2, C3, C4. If we follow the same steps as in first part of the proof, ∫
C1

Q(x, y) dy = ∫
C3

Q(x, y) dy = 0 (y is constant on C1 and C2) and

∫
Q(x,y) dy =

b∫
a

Q(f2(y), y) dy,
C2
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∫
C1

Q(x,y) dy = �gH

b∫
a

Q(f1(y), y) dy.

So we can evaluate the left side of (20) as follows:∮
C

Q(x, y) dy =
∫
C1

Q(x,y) dy ⊕
∫
C2

Q(x,y) dy ⊕
∫
C3

Q(x,y) dy ⊕
∫
C4

Q(x,y) dy

=
b∫

a

Q(f2(y), y) dy ⊕ �
b∫

a

Q(f1(y), y) dy

=
b∫

a

Q(f2(y), y) �gH Q(f1(y), y) dy.

Then equations (19) and (20) exist. �
Example 4.4. Consider 

∮
C

(u 
 x4) dx ⊕ (v 
 xy) dy, where u and v are fuzzy numbers defined in terms of α-level 

by uα = [−1 + 3α, 5 −α] and vα = [2 +α, 7 − 2α], and C is the triangular curve consisting of the line segments from 
(0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0). To evaluate this fuzzy line integral we can use the fuzzy 
Green’s theorem (Theorem 4.2). So we have

∮
C

(u 
 x4) dx ⊕ (v 
 xy) dy =
1∫

0

1−x∫
0

(v 
 y) �gH (u 
 0) dydx

=
1∫

0

1−x∫
0

(v 
 y) dydx

=
1∫

0

(
v 
 y2

2

)]1−x

0
dx

=
1∫

0

(
v 
 (1 − x)2

2

)
dx = 1

6

 v.

The answer by α-levels is 1
6 · [2 + α, 7 − 2α].

Lemma 4.2. According to the fuzzy Green’s theorem we can conclude that∮
C

P (x, y) dy �gH Q(x, y) dx =
∫∫
D

Px(x, y) ⊕ Qy(x, y) dA. (23)

Proof. It is enough to change the roles as follows: P(x, y) := �gH Q(x, y) and Q(x, y) := P(x, y). Then similarly 
to the fuzzy Green’s theorem proof, we obtain∮

C

�gH Q(x, y) dx = ∫∫
D

Qy(x, y) dA and
∮
C

P (x, y) dy = ∫∫
D

Px(x, y) dA.

By these equations we have∮
P(x, y) dy ⊕ �gH

∮
Q(x,y) dx =

∫∫
Px(x, y) dA ⊕

∫∫
Qy(x, y) dA,
C C D D
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∮
C

P (x, y) dy �gH

∮
C

Q(x, y) dx =
∫∫
D

Px(x, y) ⊕ Qy(x, y) dA,

and by Lemma 2.4
∮
C

P (x, y) dy �gH Q(x, y) dx = ∫∫
D

Px(x, y) ⊕ Qy(x, y) dA is obtained. �
Theorem 4.3. (Fuzzy divergence theorem) Let C be a smooth curve given by r(t) = x(t)i + y(t)j, a ≤ t ≤ b, and 
F(x, y) = P(x, y)i ⊕ Q(x, y)j be a differentiable fuzzy-valued vector function. It is sufficient that one of the compo-
nents in F(x, y) be a fuzzy function (this means one of P and Q has fuzziness and other one is a singleton). Then∮

C

F(x, y) � n(t) ds =
∫∫
D

divF(x, y) dA, (24)

where D is a region enclosed by C and n(t) = y′(t)
|r ′(t)| i − x′(t)

|r ′(t)| j is an outward unit normal vector to C.

Proof. As result of Definitions 3.3 and 4.2, equation (5), and Lemmas 2.5 and 4.2 we have

∮
C

F(x, y) � n(t) ds =
b∫

a

(F (x, y) � n(t)) � |r ′(t)|dt

=
b∫

a

(
P(x(t), y(t)) 
 y′(t)

|r ′(t)| ⊕ (−1)Q(x(t), y(t)) 
 x′(t)
|r ′(t)|

)
� |r ′(t)|dt

=
b∫

a

(
P(x(t), y(t)) 
 y′(t)

|r ′(t)| �gH Q(x(t), y(t)) 
 x′(t)
|r ′(t)|

)
� |r ′(t)|dt

=
∮
C

P (x, y) dy �gH Q(x, y)dx =
∫∫
D

Px[i,ii−gH ] ⊕ Qy[i,ii−gH ] dA

=
∫∫
D

∇i,j � F(x, y) dx,

where {i, j} ∈ {1, 2} and according to Definition 3.5 we know that ∇i,j � F(x, y) = divF(x, y). In the case of a 
singleton, both types of differentiabilities are the same. Hence equation (24) exists. �
Theorem 4.4. (Fuzzy Green’s identity) Let U(x, y) (for short U ) be a fuzzy-valued function and G(x, y) (for short G) 
be a real-valued function, the derivatives of which in any direction are uniform and continuous, and let n(t) (for 
short n) be the outward unit normal vector to C. We define surface D bounded by closed curve C by assumption of the 
fuzzy Green’s theorem (Theorem 4.2). Then∫∫

D

(U 
 ∇2G) �gH (G 
 ∇2
i,jU) dA =

∮
C

(
(U 
 ∇G) �gH (G 
 ∇i,jU)

)
� n ds, (25)

where {i, j} ∈ {1, 2}.

Proof. By the divergence theorem we have 
∮
C

F(x, y) � n(t) ds = ∫∫
D

∇i,j � F(x, y) dA. We put F := U 
 ∇G, 

where F is a fuzzy-valued vector function where one of the components is a fuzzy-valued function and ∂G
∂x

and 
∂G
∂y

have the same sign. By Lemma 3.1 we get ∇ � F = ∇ � (U 
 ∇G) = U 
 (∇ � ∇G) ⊕ (∇i,jU) 
 (∇G) =
(U 
 ∇2G) ⊕ (∇i,jU) 
 (∇G), for {i, j} ∈ {1, 2}. Also F � n = (U 
 ∇G) � n. So by using Theorem 4.3, we get∫∫

(U 
 ∇2G) ⊕ ((∇i,jU) 
 (∇G)
)

dA =
∮

(U 
 ∇G) � n ds. (26)
D C
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Now define F := G 
 ∇i,jU , for {i, j} ∈ {1, 2}. So by Lemma 3.1 we have ∇ � F = ∇ � (G 
 ∇i,jU) = (G 

∇2

i,jU) ⊕ (∇G) 
 (∇i,jU). Hence∫∫
D

(G 
 ∇2
i,jU) ⊕ (∇G) 
 (∇i,jU) dA =

∮
C

(G 
 ∇i,jU) � n ds. (27)

Since (∇G) 
 (∇i,jU) �gH

(
(∇i,jU) 
 (∇G)

)= 0, by subtracting equation (27) from equation (26), we get∫∫
D

(U 
 ∇2G) �gH (G 
 ∇2
i,jU) dA =

∮
C

(
(U 
 ∇G) �gH (G 
 ∇i,jU)

)
� n ds. �

5. The fuzzy Poisson equation

In this section we investigate the fuzzy Poisson equation with Dirichlet boundary conditions of the following form:

∇2
i,jU = K(x,y) in D.

U = σ(x, y) on ∂D,

where {i, j} ∈ {1, 2}, U = U(x, y), K = K(x, y), σ = σ(x, y) ∈ RF , and D is bounded. To achieve this, first we will 
prove the fuzzy maximum principle, then we will prove the uniqueness and stability theorem. Finally, the fundamental 
solution of the fuzzy Poisson equation is presented by use of a Green’s function [18] and the fuzzy Green’s identity 
theorem (Theorem 4.4).

5.1. Uniqueness and stability of the solution of the Dirichlet boundary conditions for the fuzzy Poisson equation

Theorem 5.1. (Fuzzy maximum principle) Suppose that U satisfies ∇2
i,jU = K in surface D, where U = U(x, y),

K = K(x, y) ∈ RF . Then U attains its maximum on its boundary ∂D. Then max∂D U(x, y) = maxD U(x, y).

Proof. We prove the theorem in two parts:

1. Suppose that K(x, y) � 0 in D. Since U is continuous in D (D ∪ ∂D), U assumes its maximum there. Suppose 
for contradiction that U attains its maximum at point (x0, y0) in D. Then, by Theorem 2.5, we have

UxgH
(x0, y0) = 0, UygH

(x0, y0) = 0,

UxxgH
(x0, y0) � 0, UyygH

(x0, y0) � 0.

This means ∇2
i,jU � 0 at (x0, y0), which contradicts K � 0 in D. Hence in this case U must attain its maximum 

on ∂D. So

max
∂D

U(x, y) = max
D

U(x, y).

2. Suppose that K(x, y) � 0. Let M := max∂D U(x, y) and ε > 0. We define an auxiliary function ν(x, y) =
U(x, y) ⊕ ε(x2 + y2), for any ε > 0. Then ∇2

i,j ν = K ⊕ 4ε � 0 in D. From the first part ν attains its maximum 

on ∂D; thus we have ν � M ⊕ εR2 in D (where U � M on ∂D and R is the radius of the circle containing D). 
This gives that U � ν � M ⊕ εR2.
Since ε > 0 is arbitrary, let ε → 0 to obtain U � M in D (i.e., if U satisfies ∇2

i,jU = K � 0 in D, then U cannot 
exceed M), thus the maximum value of U on ∂D. �

Remark 8. The same can be applied to the minimum principle.

Theorem 5.2. Consider the Dirichlet boundary value problem

∇2
i,jU = K(x,y) in D,

U = σ(x, y) on ∂D,
(28)
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where {i, j} ∈ {1, 2}, U = U(x, y), K = K(x, y), σ = σ(x, y) ∈ RF , and D is bounded. This has at most one solution, 
and its solution is stable.

Proof. Suppose that U1, U2 are two solutions of the Poisson equation (28). Let V = U1 �gH U2. Then V satisfies 
∇2V = 0 in D (∇2U1 �gH ∇2U2 = K �gH K = 0) with V = 0 in ∂D (U1 = σ, U2 = σ). Then, by use of the 
maximum principle, U1 �gH U2 = V ≡ 0 in D, and therefore U1 = U2.

For proof of stability of the solution, let U1, U2 satisfy

∇2
i,jU{1,2} = K(x,y) in D,

U{1,2} = σ{1,2}(x, y) on ∂D,

where {i, j} ∈ {1, 2}, and let D(σ1 �gH σ2, 0) = ε on ∂D. Then D(U1 �gH U2, 0) = ε on ∂D. As before V =
U1 �gH U2 must have its maximum and minimum values on ∂D; hence D(σ1 �gH σ2, 0) ≤ ε in D. So the solution 
is stable (i.e., small changes in boundary data lead to small changes in the solution). �
5.2. The fundamental solution for the fuzzy Poisson equation

Consider the fuzzy Poisson equation with Dirichlet boundary conditions in the general form, given by equa-
tion (28). We will solve problem (28) by using the fuzzy Green’s identity and the Green’s function.

Suppose that L(X) is a Laplace operator defined in Definition 3.6 (∇2 := L) and U(X) is an unknown fuzzy-valued 
function and K(X) is a known fuzzy-valued function, where X = (x, y). We can now represent problem (28) as 
follows:

L(X)U(X) = K(X). (29)

The solution to equation (29) can be written formally as

U(x) = L−1K(X),

where L−1, the inverse of L, is an integral operator. L−1 is defined by use of the Green’s function:

U(x) = L−1K(X) = −
∫∫
D

G(x; ξ)K(ξ) dξ, (30)

where G(x; ξ) is the Green’s function associated with L and depends on both the position vector X = (x, y) and a 
fixed location vector ξ = (ξ1, ξ2).

We know the Dirac δ-function has the following properties:∫∫
D

δ(X) dX = 1 and
∫∫
D

δ(X − ξ) h(ξ) dξ = h(ξ). (31)

By applying L to equation (30), we get

LU(x) = K(X) = −
∫∫
D

LG(x; ξ)K(ξ) dξ.

Therefore the Green’s function defined as the solution of the Dirichlet boundary value problem is given by

LG(x; ξ) = −δ(X − ξ) in D,

G = 0 on∂D,
(32)

where G(x; ξ) is a real-valued function [21].
According to the fuzzy Green’s identity theorem (Theorem 4.4) and replacing G by the Green’s function G(x; ξ)

introduced in equation (32), we have∫∫
D

(U(X) 
 ∇2G(X; ξ)) �gH (G(X; ξ) 
 ∇2
i,jU(X)) dA (33)

=
∮ (

(U(X) 
 ∇G(X; ξ)) �gH (G(X; ξ) 
 ∇i,jU(X)
)
� n ds.
∂D
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According to the fuzzy Poisson equation (28) and the Green’s function equation (32) we get∫∫
D

(U(X) 
 − δ(X − ξ)) �gH (G(X; ξ) 
 K(X)) dA (34)

=
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds.

By Lemma 2.4 and Dirac δ-function properties (31) we have

(−1) · U(ξ) �gH

∫∫
D

(G(X; ξ) 
 K(X)) dA =
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds. (35)

Hence

• if �gH is case (i), we obtain

(−1) · U(ξ) =
∫∫
D

(G(X; ξ) 
 K(X)) dA ⊕
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds

or

U(ξ) = (−1) ·
∫∫
D

(G(X; ξ) 
 K(X)) dA ⊕ (−1) ·
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds. (36)

• if �gH is case (ii), we obtain

(−1) · U(ξ) =
∫∫
D

(G(X; ξ) 
 K(X)) dA � (−1) ·
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds

or

U(ξ) = (−1) ·
∫∫
D

(G(X; ξ) 
 K(X)) dA �
∮

∂D

(σ (X) 
 ∇G(X; ξ)) � n ds. (37)

In equations (36) and (37), if U(ξ) is a fuzzy number, then the solution of the Poisson equation exists; otherwise 
a solution does not exist.

Example 5.1. (The fundamental solution for the fuzzy Poisson equation on a two-dimensional disc) Consider the 
fuzzy Poisson equation with Dirichlet boundary conditions as follows:

∇2
i,jU = K(x,y) in D,

U = σ(x, y) on ∂D,
(38)

where {i, j} ∈ {1, 2}, D = {(x, y) | x2 + y2 ≤ a2}, and U(x, y), K(x, y), σ (x, y) ∈ RF . In the polar plane on a 
two-dimensional disc, the Green’s function is evaluated [18] as

G(x,y; ξ1, ξ2) = G(r, θ; r∗, θ∗) = − 1

4π
ln

(
a2

r∗2 · r2 + r∗2 − 2rr∗ cos(θ − θ∗)
r2 + a4

r∗2 − 2r a2

r∗ cos(θ − θ∗)

)
,

where x = r cos θ , y = r sin θ , 0 ≤ θ ≤ π . C(θ) = a cos θ i + a sin θ j is the vector equation of curve ∂D, and we 
denote G(r, θ; r∗, θ∗) by G (for short). Therefore

∇G � n = −a

2π

(
1 − ( r∗

a
)2

r∗2 + a2 − 2ar∗ cos(θ − θ∗)

)
.

In view of the general form of the solution for the fuzzy Poisson equation given by equations (36) and (37) we have 
two types of solution as follows:
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U(r∗, θ∗) = −1

4π

2π∫
0

a∫
0

ln

(
a2

r∗2 · r2 + r∗2 − 2rr∗ cos(θ − θ∗)
r2 + a4

r∗2 − 2r r2

r∗ cos(θ − θ∗)

)

 K(r, θ) rdrdθ

⊕ 1

2π

2π∫
0

(a2 − r∗2
)

a2 − r∗2 − 2ar∗ cos(θ − θ∗)

 σ(θ) dθ (39)

or

U(r∗, θ∗) = −1

4π

2π∫
0

a∫
0

ln

(
a2

r∗2 · r2 + r∗2 − 2rr∗ cos(θ − θ∗)
r2 + a4

r∗2 − 2r a2

r∗ cos(θ − θ∗)

)

 K(r, θ) rdrdθ

� −1

2π

2π∫
0

(a2 − r∗2
)

a2 − r∗2 − 2ar∗ cos(θ − θ∗)

 σ(θ) dθ. (40)

6. Conclusion

In this study, the fuzzy Poisson equation with Dirichlet boundary conditions (boundary value problem) was investi-
gated in detail. Its uniqueness and stability were proved by use of the fuzzy maximum principle. Then its fundamental 
fuzzy solution was provided. To achieve these results, some new concepts such as a fuzzy-valued vector function, 
fuzzy gradient, divergence, and Laplace operators, and a fuzzy line integral were studied. Then the fuzzy Green’s the-
orem and the fuzzy divergence theorem and the fuzzy Green’s identity were proved. Consequently, the fuzzy solution 
of the fuzzy Poisson equation was obtained by our applying an inverse operator. As a result, an integral equation was 
obtained; therefore the fundamental fuzzy solution was presented by use of the fuzzy Green’s identity and a Green’s 
function. The aforesaid fundamental solution can be calculated by numerical methods that were discussed in this 
study. Future research will be concerned with adopting these results to calculate the fuzzy Poisson solution numeri-
cally. In this article, all the results obtained are original results that have been extended to the fuzzy form in such a 
way that their restriction (one level) results in the real mode, and this is a criterion for establishing the authenticity of 
results.
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